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Strut-and-tie models for simply supported deep beams with or without web reinforcement are
proposed. The ultimate capacity of deep beams is very sensitive to the manner of modeling nodal zones
and selecting an appropriate effective compressive strength. In this study, the new effective compressive
strength and nodal models for the detailing of the CCT-nodes are also presented.

The validity of the proposed model is examined by comparison with experimental results in many
other works which yielded most of information on behavior of deep beams published to date, and good
agreement between measured and predicted values by the proposed models is obtained.
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1. INTRODUCTION

Up to now, many investigators">>* have studied
the structural behavior of deep beams and also
suggested a few of approximate design equations for
predicting ultimate shear strength of RC deep beams.
These equations, however, give excellent correlation
with only known experimental results, but often fail
to predict the ultimate strengths when the
geometrical parameters of the beams are different
from its considerations. To maintain the same
accuracy over a wide range of parameters, the
design method must be based on a rational theory,
which can provide a clearer structural behavior and
a simplified approach to a complex problem.

The formulas in Clause 13.2.7 of JSCE code ¥ is
based on the analytical results of non-linear FEM
and gives good predictions of shear strength for the
simply supported deep beams. However, the design

equation cannot reflect the effect of shear
reinforcement.
Strut-and-tie models or truss models are

considered to be the rational and appropriate basis
for design and ultimate strength analysis of cracked
reinforced concrete beams, because they give a
clear picture of the behavior of structural concrete.
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Fig.1 Typical strut-and-tie model for deep beams 7’

In strut-and-tie models the flow of forces in a
structure is approximated by a system of
compression members, the struts, and tension
members, the ties, which intersect at nodes (see
Fig.1). The forces in the members are determined
from equilibrium conditions and then can be used to
evaluate compressive stresses in the concrete and to
proportion the reinforcement. And a node as
introduced into model implies an abrupt change of
direction of the forces. There are essentially four
types of nodes depending on the combination of
struts C and ties T, i.e. CCC-node, CCT-node, CTT-
node, TTT-node ®.



The strut-and-tie model for the simply supported
deep beams was developed by Collins and Mitchell ”
and was adopted by the CSA Concrete code [A23.3-
94] ®. The CEB-FIP Model code 1990 ? also
adopted strut-tie-models as the design tools to
design deep beams. The basic procedure of
structural idealization for deep beams is quite same
in both codes, but the design criteria for effective
compressive strength for concrete struts is different.

In this paper, strut-and-tie models for simply
supported RC deep beams with or without shear
reinforcement are proposed, and the new effective
compressive strength and nodal models for the
detailing of the CCT-node are also presented. The
validity of the proposed model is compared with
previously published experimental data on the
behavior of deep beams. And its accuracy is also
verified by comparisons with Niwa’s equation '*'.
the CEB-FIP Model code 1990, and the CSA Concrete
code [A23.3-94].

2. EFFECTIVE COMPRESSIVE STRENGTH

The physical basis of strut-and-tie models is back
to the lower bound theorem of plasticity. However
plain concrete will not show a perfectly plastic
behavior, because of the failing branch of its stress-
strain curve and the limited ultimate strain (see
Fig.2). The slope of the descending part strongly
depends on the strength of concrete 7, where £ is
the compressive strength obtained in the cylinder
test; as the strength of concrete becomes greater, the
slope of failing branch becomes steeper, as shown
in Fig.3. But even if the concrete strength has a
stronger influence on the limit load, a good
correlation with test results can be achieved, when a
reduced “effective compressive strength f, 7 is
taken into account ',

The CEB-FIP Model code limits the stress of
concrete in compression as follows:

[MPa] (1)
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for uncracked zones and nodes where only compression
struts meet , or as

[MPa] (2)
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for cracked zones and nodes where the compressive
resistance may be reduced by the effect of transverse
tension from reinforcement and by the need to transmit
force across the cracks. But, £, may also be applied in
other nodes if the angle between ties and major struts is
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Fig.2 Effective compressive strength of concrete
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Fig.3 Stress-strain curves for concrete'>

not less than 55° and if the reinforcement layout in the
node region is specially designed (e.g. arranged in
several layers, with transverse ties).

It has been proposed in the CSA Concrete code that
the value for £,, shall be computed from

for
=——* <085 MPa] (3
Tt 0.8+170¢, S MPIE)
and & is calculated as
s =&, + (g, +0.002)cot* 8 4

and 6 is the smallest angle between the compressive
strut and the adjoining tension ties and ¢, is the
tension strain in the tension tie inclined at 6 to the
compressive strut. This strain softening concept for
determining the effective compressive strength of
struts was developed by Collins et al. ™ and Vecchio
et al. ', The CSA Concrete code limits the stress of
concrete in nodal regions as follows: (a) 0.85/, in
nodal zones bounded by compressive struts and
bearing areas; (b) 0.75f, in nodal zones anchoring
only one tension tie; and (¢) 0.60f, in nodal zones
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anchoring tension ties in more than one direction.
But the code also provides a special requirement
that the beneficial effect of confinement may be
accounted for if substantiated by the test results.
Nielsen etal.'” carried out an extensive experimental
test program in order to determine the effective
compressive strength in the web, and proposed that
for practical purposes the effective compressive
strength can be considered to be a function of f,
only for beams with ordinary or prestressed
reinforcement and vertical stirrups as follows:

fu =[o.s Ja )fc,( MPa] (5)
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But, Nielsen also observed that for beams without
shear reinforcement the effective compressive
strength of concrete is strongly dependent on the
shear span-to-depth ratio, a/k or a/d. Smaller a/h
values give substantially higher effective
compressive strength than greater a/f# values. The
reason for this is due to the fact that for small a/k
values the beam acts very much as an arch already
in the uncracked ¢lastic region, while for greater
values of a/h a considerable redistribution of
stresses occurs before the final collapse. Wang et
al™” argued that the shear span/depth ratio should be
taken into account for determining the 7., values of
struts for deep beams when a/# to be less than 2.0
because the stress state in the shear span is not
uniaxial stress state. According to the statistical
analysis for the deep beams, Wang et al. proposed
the effective compressive strength as follows:

So
foo = [08 200}(1 25-0.25 h)fck [MPa] (6)

For a deep beam subjected to shear loading, the
lateral confining pressure occurs in the concrete
within shear span. The lateral confining pressure
leads to increase in strength as well as an increase in
ductility. When the shear-span ratio is smaller, the
lateral confining pressure is greater.

For the stress fields developed in strut-and-tie
models the stress states in concrete were often
superimposed by a strain state imposed by the
elongation of the tensile reinforcement. The
deformation of the reinforcement produces cracking
in concrete. Thus there results a strain softening and
a decrease in compressive strength. For this reason
the disturbance from reinforcing bar should also be
considered when 7, is determined.

Determining the effective compressive strength
for struts and nodes depends largely on engineering
judgment or on test results. In this paper, the authors

proposed new effective compressive strengths for
the inclined struts and CCT nodal zones. The
proposed equations take into account the following
parameters; concrete strength, shear-span ratio, and
the disturbance from reinforcing bars. When the
beams contained the equal amount of main
reinforcement correspondence to the required
tensile force to proportion the force of the inclined
concrete strut from equilibrium conditions at the
CCT=node, the effective compressive strength will
be determined by:

fi,=0. 68[1 2fst) j(l.zs ~0.25 -Z-j 7., [MPa] (7)

When the provided main reinforcements are greater
than the required tensile reinforcements, the
disturbance from reinforcing bars may be decreased
because of the reduction of the stress in the tensile
tie. In this case, the effective compressive strength
also be increased, and can be proposed as

(1- 7, /250)1.25 - 0.25a/d)
0.5+T,/T,..

where T, is the required force in tension tie using
Eq.(7); T, 1s the maximum force in tension tie
provided, Af,; A, is the provided area of tension tie;
J, s the yield stress of tension tie.

If T,.. = T,, both of Eq.(7) and (8) will provide the
approximately same results.

In this study, the effective compressive strength
of the concrete struts bearing on the CCC-node is
calculated according to the criteria of the CEB-FIP
Model code; Eq.(1) is applied to the node surface
which is bound to the inclined struts, and the criteria
of biaxial compression strength 7, , is applied to the
node surface which is bound to the compression
chords of beams.

f.. [IMPa](8)

.fceZ =

1+3.80c
.fz::k = (1 . a)z fck [Mpa] (9)
where _ min(0,0.,) (10)

max(O'b »0c2 )

and 0, is the bearing stress under concentrated load;
0, 1s the stress in the section orthogonal to the

c

bearing.
3. DETAILING NODES

The nodes of the strut-and-tie model are a
simplified idealization of reality, and usually form
two-dimensional stress fields. According to the
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stress states within the interior of the nodes, the
nodes will be treated as “hydrostatic or non-
hydrostatic™. If the stress fields bearing on the nodes
have equal stress intensity and intersect to each
sides of the nodes by perpendicular, the stress state
inside of the nodes is homogeneous and a so-called
“pseudo-hydrostatic”. In this case, the size of the
nodal area is only limited by the existing boundary
of the bearing plate. In a “non-hydrostatic” stress
state, the stress fields bearing on the nodes have not
equal stress intensity and not intersect to the nodes
by perpendicular, then a non-homogeneous stress
state will generally exist. The stress state in this
zone can be found by the Mohr’s circles '

(1) The CCC-node

The CCC-node will occur under the concentrated
loads. The node regions are assumed to be a plane
non-hydrostatic as shown in Fig.4. Also, the stress
fields along each sides of the node are assumed to
be a uniformly distributed. The effective widths of
the inclined struts are influenced by the length of
the bearing plates 7, and the depth of the top
horizontal compression struts d,,.

In this study, the pressure o, along the inclined
face of the node will be checked with respect to £,
and the pressure o, in the section orthogonal to the
bearing will be verified with respect to f,... However,
the bearing stress o, was not checked, because
many of experimental results had shown that the
bearing stresses of the beams which failed in shear
or web crushing modes were greater than the biaxial
compressive strength of concrete, especially when
the size of bearing plates were very small in
comparison with the depth of beams or the concrete
was confined by means of lateral reinforcement.

For a given d, value, the effective width of
inclined concrete strut w’,;can be determined by:

Wy =1, sin@+d, cosé (11)
where

d-0.5d
f=tan™ (————=

Hence, the compressive force of D, in the inclined
concrete strut can be found by:

Dl =b. celwé[f (13)
or
D, =bf_,(r,sin@+d, cos @) (14)
(2) The CCT-node

These types of nodes occur at end-supports of
deep beams. Detailing of the CCT nodal zone is

) (12):
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Fig.4 The CCC—node: (a) node under two point loads; (b)
node under concentrated load
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Fig.5 Proposed models for the beam without stirrups
(Non-hydrostatic nodes)

closely related to the following parameters as the
type of anchorage for reinforcing bars, the state of
stress within the interior of the nodes, the size of
bearing plates, the anchorage length, and the
location of tension ties. The CCT-nodes that will
reflect the previous parameters are proposed by the
authors in this study (see Fig.5 and Fig.6). Among
the proposed models for the CCT-node, more than
one model can be applied to the same beam for
calculating its ultimate capacity. The ultimate
capacity of the beam will vary with the types of
node models. The type of node model which will
gives the greater capacity depends generally on the
geometrical parameters of the beams.
a) Non-hydrostatic nodal model

From the equilibrium conditions at the nodal zone
as shown in Fig.5(b), the relationship between the
resultant forces can be derived:
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Fig.6 Proposed models for the beam without stirrups
(Hydrostatic nodes)

T =D, cos@ (15)
V =D,sin@ (16)

where
Db :b. celw:f)ﬁ* (17)

The effective width of concrete strut w’,; in non-
hydrostatic nodal models will vary with the
anchorage lengths of tension reinforcements /,,

computed from behind the bearing plates (see Fig.5).

For a given value of /,, the following relationship
between w’,;and /,'can be derived:

Woy =1, sin@+2ycos @ (18)
where

y=(, tan8, +u,)/2

| dy —05d,
f=tan" (——)

a 19)

_ d (

6, =tan .
a+l +05(r, —71,)

dy=h-y<d

From Eq.(18) and (19), it can be seen that as the
anchorage length becomes longer, the effective
width of concrete strut will be increased, but the
strut angle ¢ will be decreased. And, as can be
seen from Eq.(16), the ultimate capacity of the

beam V is related to both D, and &, then the value
of /, which yields the maximum value of the
ultimate capacity of the beam may be determined by
iterating procedure. However, the anchorage length
should be less than or equal to the result of
subtracting 7, from /,, where /, is the development
length of the straight reinforcement in tension given
in the code. Further, Eq.(19) is only valid when the
depth d,4 is not greater than the effective depth d.
The condition that d,; does not exceed d can be
written as:

/ _u, x[a+0.5(rb —r,)]

‘l.min
d-u,

(20)

If the actual anchorage length is less than the
minimum anchorage length defined by Eq.(20), the
effective width of concrete strut must be calculated
by substituting %, for y in Eq.(18) and d for d,; in
Eq.(19). In this case, the effective width of concrete
strut is equal to the one given by both the CEB-FIP
Model code and the CSA Concrete code [see
Fig.5(b)].

Checking of the concrete strut pressure o,, with
respect to f.,, is normally sufficient for the CCT-
node. However, if the tension tie is anchored by an
anchor plate or is arranged in several layers with
transverse ties, the pressure o, can be checked with
respect to f,;.

b) Hydrostatic nodal model

For the hydrostatic node, the stress states inside
the nodal areas are homogeneous, i.e. the stresses
along the sides of node are equal to o,;. The fan-
shaped transition stress fields with the slope of
45° are used to enlarge the stress fields above the
supporting blocks, because the strengths of the
CCT-nodes f., were considerably lower than the
actual bearing stresses for most of the deep beams
with a/d<1.0, which failed in shear or web crushing
mode, not in bearing mode.

For a given #, the effective width of concrete
strut w’,; can be determined by :

wb _rb +2(uo _.y)

= or y<u
eff Sin 9 f y o
= .3 for y>u, @an
cos @
TP @)
where =
2bfce2

As can be seen from Eq.(21) and Eq.(22), the
effective width of concrete strut for hydrostatic
node model is closely related to the force 7.



(3) The required force of the tension tie

Since the force of the strut D, contacted with the
CCTnode is determined by the value of w’ the
force T at this location is also limited by the
detailing of the nodes, because the horizontal
component of D, must be equal to T [see Eq.(15)].

In order to determine the effective compressive
strength of the strut f., at the CCTnode, the
required force in tension tie 7, should be determined
firstly by using /7., as defined in Eq.(7).

Substituting Eq.(17) into Eq.(15) for D, gives:

T =bf, Wiy cos @ (23a)
or
T, =bf " w2wly cosf (23b)

and replacing w’,; in Eq.(23) by Eq.(18) and Eq.(21).
the following relationships can be obtained.

For non-hydrostatic nodal model, the required
tension force T, is

T,=bfl,(r,sinf+2ycosf)cosd  (24)

and for [, £ ;. putting y = u, in Eq.(24), then T,
is given by:

T, =bf.,(r,sin@ +2u, cos@)cosd  (25)

If a special anchorage device is provided for tension
ties, 7' is equal to 7, and can be calculated directly
by using f;,,.

T =bf,, (1, sin@ + 21, cos f)cos (26)

For hydrostatic nodal model,
tension force T, is calculated by:

7 =bfc’ez(rb +2u,)

= 1+tan6
By substituting 7, into Eq.(8), the effective
compressive strength £.,, will be determined. Hence.
the tension force 7, which gives the maximum
compressive force for the concrete strut is
calculated as follows:

T = ﬁ]‘ﬂ S Tmax
where £ is the effective compressive strength ratio,

and should be greater than or equal to one.

ﬁ:fj—zzlo

Jce2

the required

<2bu,fl, @7

(28)

(29)

4. MODELLING AND ANALYSIS
PROCEDURE

There are no unique or absolute solutions in the
application of strut-and-tie models. To obtain a
satisfactory solution, the strut and tie members of

truss node

h

concrete.
tension tig

Fig.8 Truss model with concrete tension members for the
beams with shear span-to-depth ratio < 2.0 '"

the developed models must follow the force flow
that takes the shortest path between two loading
points or node points.

(1) Beams without shear reinforcement

For deep beams without shear reinforcement, the
flow of forces at their ultimate limit state can be
modeled with a statically determinate truss system
as shown in Fig.7. This model is made up of only
concrete compression struts and steel tension ties,
and takes the shortest load path between loading
point and support point. A sophisticated model
using concrete tension ties was proposed by Khaled
et al. '” as shown in Fig.8. In their study, the
predicted failure loads by using the simple truss
model shown in Fig.7 were found to be much
higher than the actual failure loads for the beams
without shear reinforcement which were tested by
them. However, the reason for these discrepancies
may result from the effective compressive strength
of the struts and the CCT-nodes. In fact, 0.6f,, was
used as the effective compressive strength for the
struts and the CCT-nodes in their study, and no
parameters which have a strongly effect on the
effective strength of concrete were considered.

If struts and ties have reached to their capacity
simultaneously, the beam will fail by the crushing
of strut after yielding of tension tie. But in fact the
possibility to occur this type of failure is very low.
The type of failure most relevant to deep beams is
shear or shear-compression failure in web. In this
case, ultimate strength of the beam will be
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controlled by the capacity of the strut. Flexural
failure will also occur if the amount of main
reinforcement is very small, and then the capacity of
strut is greater than that of tie. The tension forces in
reinforcing bars are permitted to 7, (=44) in
proposed strut-and-tie models, where A4, is total area
of the longitudinal reinforcing bars and £ is its yield
stress. The effect of strain hardening for steels after
yielding was not considered in this study.

There are two unknowns, 7" and V, in the model
shown in Fig.7. To obtain the ultimate capacity of
the beam, the tension force 7" should be determined
firstly, which vary with 4. And until to failure, the
equilibrium conditions between struts and ties at the
nodes must be kept. Therefore, the following trial
and error technique should be used to solve the
problem:

1) Calculate £, from Eq.(1) and /" ., from Eq.(7).
2) Assume d,, as follows:
da :(damm +damax)/2

where the initial value of d,”” =0 and d,"* = d

3) Calculate 0 from Eq.(12) for hydrostatic node
and Eq.(19) for non-hydrostatic node.

4) Calculate T, from Eq.(24),(25),(26), and (27).
5) Calculate £, from Eq.(8) and 8 from Eq.(29).
6) Calculate T from Eq.(28).

7) Calculate D, from Eq.(17) and D, from Eq.(14).

8) Check that D, =D, If D,#D,, return to Step 2)
with d,”"= d, for D,>D, or d,”* =d, for D,<D,.
9) Calculate o,and 0., as

(30)

_ D, sin0
b br, 31)
D, cos6
C,,=——
i bd,

10) Calculate f5,, from Eq.(9) and « from Eq.(10).
11) Check 0., £ fo. If not, adjust d, as:
D, cosé

bf sex

Return to Step 3) and omit Step 8) from the
routine above.

dy= (32)

12) Calculate the ultimate capacity of the beam.

V=D,sin@ (33)

For non-hydrostatic nodal model with /,2/, ,,,, it
is necessary to repeat above calculations for a range
of /, values starting from /, ,,,and increasing /; until
the ultimate capacity of the beam reached its
maximum value. A computer program based on the

(b) Truss model

Fig.9 Proposed STM model for beams with stirrups

above calculation procedures was developed by the
authors, and the flow chart for this program
described in Appendix A.

(2) Beams with vertical web reinforcement

For beams without stirrups (1.0<a/d<2.5), the
diagonal crack forms independently and not as a
development of a flexural crack. The beam usually
remains stable after such cracking. The penetration
of the diagonal crack deeply into the compressive
zone reduces the effective cross-sectional area of
the zone and thus leads to crushing failure of the
concrete near the loading points.

Previous investigations '® 9 222D have indicated
that the addition of stirrups will delay the formation
and spreading of the diagonal cracks and also
reduce the width of the cracks. Further, stirrups
have the tendency to prevent the diagonal cracks
from penetrating into the compressive zone.
However, the effect of vertical stirrup decreases as
a/d decreases and is not proportional to the amounts
of stirrups for deep beams with a/d<2.5 as its in
slender beams. For short beams (1.0<a/d<2.5) with
stirrups, truss action is fairly obvious, as well as
arching action. To obtain a satisfactory solution,
thus, a rational model which can considers both arch
and truss effects must be introduced.

A strut-and-tie model for deep beams with
stirrups is presented in Fig.9. The applied load V' is
transmitted to the support of the beam by the
compressive struts, D, and D;. The inclined angle of
these struts should be limited in 25° £ 4, £ 65° for
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D,and 4,2 0° for D,. From equilibrium condition
at the intersection of D, and T, the horizontal
component of the force D, must be equal to the
difference between the forces 7" and 7, in the tension
ties formed by the longitudinal reinforcement on the
either side of the node. The vertical component of
the force D, must also be equal to the forces 7, in
the stirrups. Furthermore, the maximum force 7,
which can be carried by the tie 7, depends on both
the total area of stirrups in pure shear span A4, and
its yield stress f,,. If the required force in the stirrup
which satisfies both the equilibrium and geometric
conditions is greater than 7™, T, equals to 7,"* and
then, the angle of the strut D, and the force of the
strut D, should be limited to the maximum force of
the tie 7. In this case, the stirrups corresponding to
the tie 7, will yield at failure. If 7, is less than T,,”*"

the force of the tie 7, should be limited to the.

geometric conditions of the beam: in other words,
the angle of the strut D, must be greater than zero,
thus the stirrups will not yield at failure. The force
of the tie T,, therefore, should be determined by
both considerations of the geometric condition of
the beam and the material properties of stirrups.

As can be seen from Fig.9, vertical stirrups play
the role of reducing the tension force of reinforcing
bars and increasing the angle between the tie and
the strut at the CCT-nodal zone. Thus, the effective
compressive strength in the CCT-node will be
increased as compared to that of beams without
stirrups. As the result, required tension force of
reinforcing bars at the CCT-node is increased, with
a consequent increase in the tension force of tie at
mid-span.

There are three unknowns, T, T, and V in the
model shown in Fig. 9. Then, to obtain the ultimate
capacity of the beam, we should firstly determine
both forces of T and 7, which vary with the values
of &,. From geometrical considerations for the truss
model shown in Fig.9(b), the following relationship
can be established:

(a—s)tan@, +stan@_ =d -0.5d,
From Eq.(34)
5 - tan_l[(d -0.5d

(34)

] (33)

where s is the distance from the loading point to the
center of stirrups provided in pure shear span.

From the equilibrium conditions, the following
equations also can be established:

D,sin@, - D,sin@, =T,

)+ (s—a)tand,

N

(36)

D, =D, cos8, [cos b, (37)
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D, =T, [cos 6, (38)

D,=(T'-D,cosb,)/cosb, (39
Substituting Eq.(36) for D, into Eq.(37) gives
D, =T, [(cosf, tan6, —sinb,) (40)
Equating Eq.(39) and Eq.(40) leads to
6, =tan"'(tang, - T, /T,) 41
Then, equating Eq.(35) and Eq.(41) leads to
6, =tan™ B G=0d, 2‘5 | %)} 42)

For the strut-and-tie model shown in Fig.9 to be
valid, the angle 8, must be greater than or equal to
zero. Thus, one of the upper limits for 8, can be
established by:

ebg‘ = tan"‘[

When non-hydrostatic nodal model is applied to
this model, furthermore, one more upper limit for 0,
should be considered. The relationship between ¥
and 8, can be obtained from Eq.(16), (17), and (18)
with 6= 4,

V =bf,,,(r,sin6, +2u, cosf,)sing,

d-05d,

a-s

(43)

(44)

It can be seen that ¥ vary with 6,. Then, the angle
6, which gives the maximum value for ¥ can be
obtained by the conditions 8 ¥/ 8 0,= 0, which is
I ( 2u, ]
tan” | —
%
Other equations required for calculating ¥ can be

established directly from equilibrium conditions and
geometrical considerations:

6,5 =2 -

SRR @

6, =tan™'[(d - 0.5d,)/s] (46)
T=T,+T,/tan6, (@47

T, =(T -T,)tané, (48)

D, =(D,sin8, + D, cos8,)/cos @ 49

where D, is the resultant compressive force of D,
and D, at the CCC-node.

To calculate the ultimate capacity of the beam
with stirrups, which has been discussed above, a
trial and error technique is applied as follows:

1) Calculate £, from Eq.(1) and /°,,, from Eq.(7).
2) Assume d, as follows:
d,=(d,™ +d,™)/2
where the initial value of d,"" = 0 and d,"* = d.

(30)



Table 1 Parameters of test beams and the ratio of shear strength predictions to test results for beams without stirrups

Parameters of the specimens Average(c.v.,%)

Authors Num| f,(MPa) | a/d r/d u,/d 0,,(%) k, STM | Niwa CEB CSA
Mathey ™ 16 [218~270| 151 022 013 1075~305]039~0.75] 1.02(14.1)| 131(80) | L3&(172){ 1.53(11.9)
Morrow 17 | 137~472(121~227[027~029] 010 [1.17~383|023~081] 1.0%(122)| 1.28(12.1)| L50(222) | 1.86(22.3)
Moody 2 12 [172~250| 153 0.38 014  [272~425]030~054] 1.06(14.9)| 0.95(12.3)| L2221.9)| 1.53(144)
Ramakrishnan®® 164~2841 0.30~062 [ 0.10~022 | 0.04~009 0.34~075 | 057~1.38| 097(174) | €7Y(116) | 1.05(242) | 1.0%266)
Paiva 2 1199~2337 100 050 013 11.67~2591047~069] 121111.1) | L0O1(148)§ 1.21(11.1)} 1.36(198)
Manuel * 4 1301~352] 030 0.37 013 097  |0.79~085| 1.00(4.26) | 0.98(4.9) | 1.00(43) | 0.96(3.5)
Walraven ** 14 1139~264| 093 013 ]011~025{1.13~1.52| 1.10~1.82 | 1.0(12.7)| 1.24(13.7) | 1.33(114) | L.65(13.1)
Kani ® 5 |248~303| 1.00~246|0.14~042]0.10~0.16 | 2.56~2.81 | 0.18~0.76 | 1L06(114)| LO4(118) | 1.30(197)| 147(16.7)
Smith ¥ 18 [161~21.7| 1.00~2.08( 0.33 017 193  {036~086] L12(72) | L1%(89) [ 1.53(86) | 1.3X(145)
Clark * 10 1215~2621118~2301011~023] 0.8 098  1028~056] 0.96(79) | 1.17(222)] 0.96(79) | 1.1X(125)
Subedi ¥ 5 [227~432(042~046 | 0.12~022{ 0.06~0.11 | 0.89~148 | 127~1.85]| 1.32(14.9)| L1§(75) | 13516.3)| 1L.8X(155)
Niwa ' 16 |254~544(0.50~200 | 0.07~0.50| 0.06~025 1.76~3.72 | 021~1.63 | 0.96(11.5)| LOK(12.9)| 1.3%(338)| 1.36(232)
Furuuchi * 9 [149~319|068~143[ 0.19 013 255 [070~1.80} 1.0%106)| 1.30(11.9){ 1.81(166)| 1.7%17.1)
Hayashigawa 2V | 11 |170~248[050~Lo0[ 019 0.13 246 |080~2.19] L17(77) | 1.32(83) | 218(16.9) [ 1.83(196)
Ishibashi * 15 1257~40610.50~250{ 025~0.50| 0.08~015] 2.09~2.87| 0.14~127| 1L.08(153)} 1.0K159)| 1L45(329)] 1.6323.7)

0., 1s the longitudinal tension reinforcement ratio(=/00*A4 /bd)

k, is the bearing stress ratio(= ¢y/f;), 7,=V.,/br, ris the smaller of r, and 7,

3) Calculate 4 from Eq.(12) and &, from Eq.(46).

4) Calculate ¢, from Eqs.(43) and 4,& from Eq.
(45), and take the smaller values.

5) Calculate T, from Eqgs.(25),(26), and (27) for 6= 6,5.

6) Calculate f,,, from Eq.(8) and j from Eq.(29).

7) Calculate T, from Eq.(28) and D, from Eq.(17)
for £= 6,8

8) Calculate &, from Eq.(35).

9) Calculate D, from Eq.(37) and 7, from Eq.(36).

10) Calculate a trial value of &, from Eq.(42).

11) Check that 4= 6, If 87+ 6y, return to Step 5)
with #,5=6,,.

12) Calculate T from Eq.(47) and 7, from Eq.(48),

where T, is the required force which satisfies
the equilibrium condition with main tension tie.

13) Calculate #,; from Eq.(42) for T, =7,° where &,
is the angle of D, strut which satisfies the
equilibrium condition with 7 tie.

14) Check that 7, = T’

If 77 <0, analysis using simple models.
If TP >0, return to Step 5) with £, = &,;.

15) Calculate D, from Eq.(49) and D™ from Eq.(14).

16) Check that D, = D,™ | If D,# D", then retum
to Step 4) with d,”"=d, for D,> D or d," ="
d, for D,< D™ .

17) Calculate o and ¢, from Eq.(31).

18) Calculate £, from Eq.(9) and o from Eq.(10).

19) Check o5 € fon If not, adjust d, as using Eq.(32).
Return to Step 3) and omit Step 16) from the
routines above.

20) Calculate the ultimate capacity of the beam.

V =D,sin@ (33)

To calculate the ultimate capacity of the beam,
both typical non-hydrostatic nodal model (/; =/, .,
and hydrostatic nodal model are used. A computer
program based on the calculation procedure above
was developed and the flow diagram for the program
is described in Appendix B.

5.VERIFICATION AND DISCUSSION

The validity of the proposed models was
examined by comparisons with experimental data in
many other works published to date. The test data
were selected on the bases of the following:

(a) The beams must fail in web shear mode or in
shear-compression mode before or after
yielding of the main reinforcements, not in
bearing or flexural mode.

(b) The value of a/d must be less than or equal to
25.

(c) The beams failed by shear in the web before
or after yielding of the vertical stirrups.

(d) The beams must be simply supported with
one or two concentrated loading.

Details of the test data are listed in Table 1 and

Table 2, where STM means the proposed method.

The selected experimental data have an extensive

range of parameters that give most information

about the ultimate behavior of simply supported
deep beams.
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Fig. 10 Comparison of measured and calculated failure loads for beams without stirrups

(1) Beams without stirrups

Experimental results of the tested beams listed in
Table 1 are compared to predicted failure loads
using the proposed method in this study, Niwa’s
equation, the CEB-FIP Model code, and the CSA
Concrete code. The beams with stirrups are also
included in Table 1, when a/d is less than or equal
to one.

Niwa '" proposed a detailed design equation
based on both non-linear finite element analysis and
experimental results for simply supported deep
beams without stirrups. This equation usually gives
a good prediction of shear strength for deep beams
within a wide range of parameters and it is the basis
of the formulas in the JSCE Concrete code:

1+, Ji+3337/) ba

1+ (a/d)

It

0.2444 2
V= (50)

where f is compressive strength(MPa) and r is the
width of bearing plate.

Fig.10 shows the comparison between measured
and predicted values using four methods above for a
total of 162 test beams. The ratio V,,/ V.., where
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V., is the measured strength and V,, is the
calculated strength, is an indication of the
correlation between them. As can be seen from
Fig.10a, the proposed model gives the lowest
coefficient of variation of 13.81% among the four
methods, and a mean of 1.05. For beams tested by
Paiva et al. *”’ and Subedi ¥, however, the proposed
models gives conservative results as shown in Table
1: a mean value of 1.21 and 1.32, respectively. These
results may be caused by the failure modes of
beams and by the local confining reinforcements
under the loading areas and above the supports.
Paiva’s beams failed in flexure-shear mode or in
shear after yield of tension reinforcement and
Subedi’s beams failed in diagonal splitting of webs
accompanied by local crushing and spalling of
concrete at loading or support regions. These beams,
also, have a very high level of bearing stress within
a range from 1.27f, to 1.85f, under loading blocks
at failure (see Table 1).

One of the decisive factors affecting the widths of
concrete struts in strut-and-tie models is the length
of bearing plates, as can be seen from Eq.(11) and
(18). Furthermore, the effective compressive



Table 2 Parameters of test beams and the ratio of shear strength predictions to test results for beams with stirrups

Parameters of the specimens Average(c.v., %)

Authors Num | f,,(MPa)| «/d r/d 0, (%) | 0,(%) k, STM | Niwa | CEB CSA
Smith ¥ 47 1161~227]|100~208[ 033 193 |0.18~125|0.52~086(1.09(54) |1.36(148) [130(72) |L14(85)
Clark * 50 | 138~476]1.16~243| 0.11~028 | 1.63~343 | 0.34~122 | 0.39~1.10|0.9%85) |L57237) [L08(95) [1.0710.8)
Rogowsky V) | 6 [261~432{097~209]|0.16~028]|088~1.12{0.19~023 [ 023~093 [116(68) |L12(738) |1.23(108) [L1X9.7)
Tan * 8 [4L1~506(108~2.16] 0.14 123 048 | 050~086(111(68) [136(165) [L.11(66) [1L0K67)
Moody *¥ 2 |24~254] 153 0.38 425 1052~095]0.52~063|1.08(46) |123(103) |1.07(4.3) |120(20)
Subedi ¥ 5 1296~432]099~1530.13~022| 0.89~148 | 020~063 | 0.51~130|1.20(10.1) [12(155) {1.23(82) |12X152)
Walraven ') 8 [170~213] o0H4 013 | 1.10~1.50{022~065 [ 1.19~226|111(82) (142(187) [146(80) |L95219)
Niwa 8 | 343~5371.00~207|006~031] 3.72~5.37| 045~231 | 047~2.91 | 1.00(72) |131(197) |L13(109) [1.02(5.5)
Nishigawa * | 7 }204~233|1.00~125| 050 191 [0.17~084]045~063[L11(89) [10680) 1127(99) |121(110)
Furuuchi 2 10 |148~370[143~181] 019 235 |0.14~100| 0.66~127]|1.1%144) | 160211) |L51(159) |1.26(17.3)
Hayashigawa 2V | 8 |170~251[100~200] 019 246 ]043~120]0.78~148]126(6.1) |136(148) |L69(14.9)]1.41(146)

0, is the vertical web reinforcement ratio(=/00+A,/bs), s is spacing of stirrups

strengths of the struts are limited to less than .85,
in this study. But, for the beams (a/d<1.0) with a
heavy local confining reinforcement, such as
Subedi’s beams, the effective compressive strength
of concrete struts near nodal zones will be greater
than 0.85f, , due to lateral confinement by these
reinforcements. As a result, the allowable force in
the tie is increased in comparison with the beam
without confinement reinforcement. In these cases,
the beams failed by crushing of concrete under
loading blocks or by spalling and crushing above
the supports. The proposed model does not consider
these failure modes, and it is only applicable to the
beam which fails by the spreading of the diagonal
crack from the load position to the support or by the
crushing of the concrete struts between two
diagonal cracks.

Niwa’s equation give relatively good agreement
between measured and predicted values; a
coefficient of variation is 18.27% and a mean of
1.15. It is worth noting that, for tested beams by
Paiva et al. and Subedi, prediction using Niwa’s
equation is more accurate than the proposed
methods. These results may arise from the
following reasons. Because 1) Niwa’s equation is
expressed in main reinforcement ratio, then the
shear strength of the beam will be determined by the
amount of tension reinforcement, not by the force in
tension tie. And 2) there are no limits to stresses for
the regions under loading points or the over
supporting points, where highly compressive
stresses occur locally. Therefore, for the beams
which failed by shear after yielding of main
reinforcements as in Paiva’s beams and have local
confining reinforcements at loading or support
regions as in Subedi’s beams, Niwa’s equation
usually will give a better result compared to the
approach of strut-and-tie model.
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Both the CEB-FIP Model code and the CSA
Concrete code give very conservative predictions
for most of the tested beams; a mean of 1.42 and a
coefficient of variation of 28.46% by the CEB-FIP,
1.52 and 24.05% by the CSA. These results may be
caused by the methods of treating the nodes and the
effective concrete strength. For detailing of the
nodes, both codes restricted the nodal areas within »
(r, or #) and 2u,(see Fig.5b), thus the calculated
tension force in the tie is also limited by these
geometrical parameters. If the dimensions of r and
u, are big enough to develop the full capacity of
tension tie, the nodes can be modeled using both
codes. But, in fact, most of the tested beams had
relatively small values of r, and the main
reinforcing bars were anchored by bonding with
transverse reinforcement, with the result that small
values of u, were used, too. For these beams, the
results obtained from both codes were generally and
significantly below the measured failure loads.

(2) Beams with stirrups

The CSA Concrete code has no provisions for
modeling of the deep beams with stirrups (a/d<2.5).
The CEB-FIP Mode! code has presented a truss
model for deep beams to reflect the effect of stirrups.
The code also have proposed a conservative
approximate expression to determine the force in
stirrup as a function of the ratio a/z (z is the length
of lever arm at the mid-section) and of the resultant
axial and shear forces. But, the expression only can
be applied when ¥ is known, thus this expression
cannot be applied directly to calculate the ultimate
capacity of the beam. Therefore, a truss model
shown in Fig.9 is applied for modeling the beam
with stirrups, while the procedures of detailing the
nodes and determining the effective concrete
strength are followed by the provisions described in
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Fig. 11 Comparison of measured and calculated failure loads for beams with stirrups

both codes. The relationships between the measured
and the predicted failure loads were shown in Fig.
11. The proposed mode! gives very good results for
all over total specimens, despite of a wide range of
parameters; the mean and coefficient of variation of
the ratio V,,,/V,, for 159 specimens are.1.08 and
10.47%, respectively, as shown in Fig. 11(a).

By contrast the case for the beams without
stirrups, Niwa’s equation [sece Eq.(50)] generally
tends to underestimate the shear strength of deep
beams with stirrups; a mean of 144 and a
coefficient of variation of 23.09% for V.. /V...
respectively. It can be also seen that the
conservation increases with increasing a/d from Fig.
11(b). From these results, it is clear that the
presence of stirrups increases the ultimate shear
strength of deep beams and thus Niwa’s equation
which does not consider the effectiveness of stirrups
may not be suitable for beams with stirrups when
ald is greater than 1.0.

The CEB-FIP Model code gives a little
conservative result with a mean of V,/V,,, is 1.24
and +a coefficient of wvariation of 16.40%,
respectively. It is worth noting that the conservation

decreases with increasing a/d as shown in Fig. 11(c).
Although the same truss model has been applied to
both the CEB-FIP Model code and the proposed
model, the result was different considerably from
each other, especially in the beams when a/d is less
than 2.0. Both models have a difference on
determining the effective compressive strength at
the CCT-nodes, £, In order to determine f,,, the
CEB-FIP Model code considers only the strength of
concrete [see Eq.(2)], while the proposed model
takes into account the parameters such as concrete
strength, the disturbance from reinforcing bars, and
a/d. Therefore, it can be concluded that the effective
compressive strength for the CCT-nodes should be
determined by taking into account the shear
span/depth ratio and the disturbance from the
reinforcing bars when a/d is less than 2.0.

The CSA Concrete code gives relatively good
agreement between measured and predicted values:
a mean of 1.18 and a coefficient of variation of
21.03 for V,/V... But, for beams with a/d less
than or equal to one, the predictions are very
conservative. The reason for this may result from
limiting of bearing stress in the CSA Concrete code.
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In applying strut-and-tie models to disturbed
regions, the CSA Concrete code limits the bearing
stress under loading points to 0.857,. However, for
most of tested beam with a/d=1.0, the bearing
stress of the beams which failed in shear or web
crushing mode was much greater than 0.85f, as
listed in Table 2. For a/d>1.0, the predictions using
the CSA Concrete code are fairly good compared to
the CEB-FIP Model code. Unlike the CEB-FIP
Model code, the CSA Concrete code takes into
account the disturbances from reinforcing bars for
determining the effective compressive strength of
the CCT-podes. As prescribed above, vertical
stirrups play the role of reducing the tension force in
reinforcing bars at the CCT-nodal zones, thus the
disturbance from reinforcement will be reduced at
this region. As the result, the effective compressive
strength in the CCT-nodes is increased. Thus, it may
be concluded that the effective compressive strength
should be determined by taking into account the
disturbance from reinforcing bars, as well as the a/d
ratio.

6. CONCLUSIONS

Based on the results of this study, the following
conclusions can be made:
(1) The presented strut-and-tie models for simply
supported deep beams are fairly adequate for
predicting the uitimate capacity of the beam with
and without stirrups when the beams failed in shear
before yielding of main reinforcement. But, for the
beams which failed by shear after yielding of the
longitudinal reinforcements or which have local
confining reinforcements at the loading and support
regions, the presented methods gave a little
conservative predictions.
(2) For beams without stirrups, Niwa’s equation
gave relatively good agreement between measured
and predicted values. When the beams failed by
shear after yielding of main reinforcement or the
local confining reinforcements at the loading and
support regions were provided, Niwa’s equation
gave the best results among the four methods.
(3) Both the CEB-FIP Model code and the CSA
concrete code gave a very conservative prediction
for most of the tested beams without stirrups. These
discrepancies result from the method of treating the
CCT-node and the effective compressive strength
for concrete struts.
(4) For beams with stirrups, Niwa’s equation, which
does not consider the effectiveness of stirrups, gave
the most conservative predictions among the four
methods considered here. A further supplements are
required to make this equation suitable for deep

beams with stirrups when a/d>1.0.

(5) The accuracy of strut-and-tie models is greatly
dependent on detailing of the nodal zones and the
effective compressive strength. When beams have a
relatively small value of » and u,, the nodal models
described in both the CEB-FIP Model code and the
CSA Concrete code are not suitable. The proposed
effective compressive strength for the CCT-node,
which is a function of the strength of concrete, the
shear-span ratio, and the disturbance from the
reinforcing bars, was found useful to deep beams
with a/d<2.5.

(6) The proposed methods for modeling the CCT-
nodes were found useful to the beams having a
relatively small value of » and u,, with transverse
reinforcements within the anchorage regions over
the supports.

APPENDIX A
Flow chart for the beams without web
reinforcement

Given Data:
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v
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Compute y and d,g;:
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APPENDIX B
Flow chart for the beams with vertical web

? ¥
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[Compute T,
T, =bf. g;, sin@+2ycos@)cosd (NT = 1)

=bf (r, +2u,)/( +tang)  (NT =2)

=bf- (5, sin6 + 2u, cosO)cos@ (NT = 3)

v

HO,

iCompute f,,:
j;*eZ = jalel/lOGS(Os + R Ta/q;nax )J
B= ) o210

v

iCompute T
T=p 2T,

Y e
ompute D,and D,

D, =T/cosé

D, = b/, (nsin0 +d, cos 6)

[Compute f;,,:
oy, =D,sinb/br,.o,, = D,cosf/bd,
a= min[o’,,.a[z]/max o-,,.al.z]

fret = fu 1 +382)/(1+a)

0 oS oy OR.
LT="1P"

I"=Dsing

Fig. A Flow chart for program Simple_STM

reinforcement
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[Compute Tand 7"

T = min[T, + 7, /tan6,.T,, |
I = (7~ T, Jtan6,

6, = tan"'| = 4-05d, | T
a § T,

| Analysis by
Simple model

[Compute D, and D;**:
D, = (D, cos6, + D, cos 8, )fcos 6
D™ = bf_(r,5in 0 +d, cos )

Compute f,,,
oy =D,sinf/br,,0,, = D,cos0/bd,
a= min[a,,,o—cz]/max T5,0.

frok = L (43 82)/(+ )

0 =L OR.
LT="1P"

Fig. B Flow chart for program Vertical_STM

Note: LT1s loading type(1P or 2P)
NT is node type (1=non-htdrostaic nodal model.
2=hydrostaic nodal model. 8=active nodal model)
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ATy MEZAETMIEDBRCT 4 —7 U —ADORFRERNTIZBE T D5
T K - BEH— - KEEE

ANT o b-F AT BRI BRSER CERV IV U — MEERICHTARHTFEL LTH
AENRTHWA. L2L, AN v M2 A BT NVIC X BBTORBEL, 2> 7 U — M IEEEECH & R
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ERBERL ORBIC L Y AR EEORYEMERTF L. ZRLOKERICE Y, AEFFHETTRTOER
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