一面せん断試験と単純せん断試験から得られた海成粘土のせん断強度の比較

辻 清1・湯 怡新2・Tom LUNNE3

1正会員 東亜建設工業㈱ 技術研究所（〒230横浜市鶴見区安養町1-3）
2工博 運輸省港湾技術研究所 土質部（〒239神奈川県横須賀市長瀬3-1-1）
3Norwegian Geotechnical Institute, Oslo, Norway

九州の有明粘土およびノルウェーのDrammen粘土について、三笠式一面せん断試験機とNGI型単純せん断試験機による一連の比較実験を行った。実験は、不搅乱試料をその有効面積で圧縮し、その後に供する粘土と人工的に作成した過圧密粘土について実施した。その結果、下記のような結果が得られた。
1）一面せん断試験は単純せん断試験よりも高い剛性とせん断強度を与える。
2）この違いは主としてせん断機構と載荷速度の違いによるものと考えられ、2）の要因に対する補正係数を導いた。
3）この係数を一面せん断強度に考慮した補正一面せん断強度は、単純せん断強度と良い一致を示した。
4）しかし人工的に作成した過圧密粘土の試験結果についてはこの補正は適用できない。

Key Words : marine clay, shear strength, direct shear test, direct simple shear test

1．はじめに

代表的直接せん断試験法として、三笠1により開発された改良型一面せん断試験機と、BjerrumとLandva2により開発された単純せん断試験機を用いる方法が挙げられる。両者とも①試験が簡単で迅速である、②K0応力が自動的に達成される、③が得られるせん断強度が強度の異方性を明確に抽出できる3）4）などの様々な利点を有し、実際問題に広く利用されている。しかし、一面せん断試験（DSST）と単純せん断試験（DSST）結果を具体的に比較した例は殆どないように思える。そこで、九州の有明粘土とノルウェーのDrammen粘土について不搅乱試料を採取供試し、四つずつ試験に対して一連のDSSTとDSSTを実施した。

本論文は、まず四つの試験の機構について考察を加え、次いで、実験に供した粘土の特性を実施した試験と共に報告する。DSSTとDSSTより得られたせん断強度を示すと共に、二つの試験より得られるせん断強度の違いについて、載荷速度とせん断機構の違いの点から検討を加えた。

2．一面せん断試験と単純せん断試験に関する概論

1）一面せん断試験（DST）

DSTおよびDSSTのせん断機構を図-1に示す。DSTでは圧密に固定された供試体中央部が水平方向に互いに移動するようにせん断応力を受けるのに対し、DSSTでは供試体後部にせん断応力が作用する。在来型一面せん断試験機では、せん断ひずみとせん断応力がせん断面上で均一にならず前後端に近い部分で大きくなる、という欠点が指摘されてきた。しかし、高田5）は三笠式改良型一面せん断試験機において、供試体の変形成態を写真撮影し、破壊までの変形成態は非常に均一で、大变形においてのみ不均一さが認められることを示した。Pottsら6）は、矩形せん断箱試験での供試体内の応力状態を調べるために弾塑性モデルを使用したFEM解析を用い、その結果を理想的単純せん断での応力～ひずみ関数を比較すると、に、体積変化、初期応力およびひずみ軟化の影響を調べた。その結果、体積変化が無ければ、DSTより得られるせん断強度は、理想的DSSTより得られ
（2）単純せん断試験（DSST）

DSSTでは、供試体の上面と下面でも不均一なせん断応力受ける。実用上の応力状態は、純粋なせん断応力状態の下での試験で測定できる。Lanksら①はNGIのDSSTの理論的線形弾性解析を行い、この仮定の正当性を確認した。Vuceticら②は、直径・高さ比が異なる中程度の粗骨粘土について一連の試験を行い、供試体の応力分布の不均一さを、測定された供試体の挙動に対する重要さを及ぼさないことを明らかにした。Ayresら③は、図-2に示すような理想的単純せん断状態で供試体実験の応実験で測定できる特殊な試験機を用いて、正規圧密状態のカオリヒ粘土について実験を行った。その結果をNGIのDSSTの結果と比較し、後者の結果は、理想的な単純せん断試験より得られるせん断強度およびせん断剛性率より約10％小さくなることを示した。

このようなDSSTのせん断強度および剛性とも理想的単純せん断状態に比べて過小評価し、逆にDSSTでは過大評価することが推測される。

3. 二つの試験におけるせん断機構の違い

図-1に示すように、DSSTでは破壊面は水平面に沿って制限されるのに対し、DSSTでは図-3 (a) に示すような供試体頭部の水平面に沿った移動に図-3 (b) に示す回転に伴う鉛直面での移動である。田中ら④は種々の試験より得られる非排水せん断強度につい
高く、鋭敏であることが読みとれる。この粘土の工学的性質については、半沢ら15により詳しく報告されている。一方、Drømmen粘土は、深さ5m〜10mに分布する比較的塑性が高い「Plastic Clay」（I_p=28〜32, γ=17.5kN/m^3）と14m以深の「Lean Clay」（I_p=14〜21, γ=19.5kN/m^3）より構成される。二つの粘土の間には、塑性、密度に大きな違いが認められる。

(2) サンプリング法

有明およびDrømmen粘土の不均衡試料採取は、それぞれ異なる方法で行われた。有明粘土については、日本標準型である固定ピストンサンプラー（真鍮製、内径75mm、厚さ1.5mm、長さ1m）を、一方、Drømmen粘土については、NGIが開発したNGI-95型固定ピストンサンプラー（鋼製、内径96mm、厚さ2.6mm、長さ1m）を使用した。サンプラーそのものには大きな違いは無いが、サンプリング法に大きな違いがある。有明粘土についてはサンプリング深さまでの泥水を用いて掘削した後、サンプラーに押し込む方式である。しかし、Drømmen粘土については、まずインナーロッドをポーリングロッドに固定し所定の深さまで強引に押し込み、次いでインナーロッドを所定の方法で固定しサンプリングする方法である。この方法は「Displacement法」と呼ばれるサンプリング法で、北欧を中心としたヨーロッパで広く用いられている方法である。Hightら16によれば、「Displacement法」にて採取した試料の品質は幾分劣るとのことである。試料採取後、有明粘土については、パラフィンワックスでシールし検査材を充填した試料箱に密閉し空輸したが、Drømmen粘土についてはサンプラーごとに木箱に入れて同じく空輸された。

(3) 試験機

三笠により開発された改良型一面せん断試験機の構造を図-5に示す。ローディングラムと上部載荷板をガイドローラーを用いてそれぞれ鉛直および水平に支えることにより、従来から指摘されてきた、せん断箱間の摩擦やせん断過程でのせん断箱の傾きを除去できる構造となっている。供試体の直径は60mm、高さ20mmで、高さ・直径比、H/Dは0.33である。NGI型単純せん断試験機の構造を図-6に示す。供試体はピアノ線で補強されたゴムメンブレン内にセットされる。この特殊なメンブレンを用いることにより、K_s状態が保たれる。供試体の直径は67mm、高さ16mmでH/Dは0.24となる。定体積せん断は、いずれの場合もせん断中の供試体高さを一定とするよう鉛直応力を制御することにより達成される。
表-1 実施した試験の条件と数値

<table>
<thead>
<tr>
<th>粘土</th>
<th>試験</th>
<th>σ'_{vo}</th>
<th>OCR</th>
<th>壓密時間</th>
<th>截荷速度</th>
<th>数量</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>有明</td>
<td>DST</td>
<td>σ'_{vo}</td>
<td>-</td>
<td>10分</td>
<td>0.25mm/min</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSST</td>
<td>σ'_{vo}</td>
<td>-</td>
<td>8時間</td>
<td>0.1%min</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Drammen</td>
<td>DST</td>
<td>σ'_{vo}</td>
<td>-</td>
<td>10分</td>
<td>0.25mm/min</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSST</td>
<td>σ'_{vo}</td>
<td>-</td>
<td>8時間</td>
<td>0.1%min</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DST</td>
<td>400kPa</td>
<td>1〜40</td>
<td>24時間</td>
<td>0.1mm/min</td>
<td>10</td>
<td>Upper Drammen</td>
</tr>
<tr>
<td></td>
<td>DSST</td>
<td>400kPa</td>
<td>1〜40</td>
<td>24時間</td>
<td>0.1%min</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

(4) 実施した試験

有明、Drammen粘土について下記の試験を実施した。

a) 有明粘土

採取した試料をその有効圧力σ'_{vo}で圧密した後、定体積条件でせん断に供する。σ'_{vo}での圧密時間はDSTでは一回圧密完了まで（約10分）、DSSTでは約8時間とし、次いで、0.25mm/minの変位速度（DST）と0.1/minのひずみ速度（DSST）でせん断に供した。圧密時間や截荷速度が違った理由は、それぞれの研究所が従来から採用してきた方法を用いたからである。以下、この試験をDSTおよびDSSTと称する。

b) Drammen粘土

Drammen粘土についてはDSSTによる膨大な試験が既に実施されているので、下記の２種類のDSTを実施した。

①DST：有明粘土と同様、不搅乱試料をそのσ'_{vo}で約10分圧密した後、0.25mm/minの変位速度で定体積せん断に供する。

②DSST：上部の「Plastic Clay」をリモールドし、次いで400kPaのもとで圧密（24時間）し、正規圧密粘土を作成する。この粘土を種々の過圧密比OCR（OCR=1〜40）のもとで膨張（24時間）させ過圧密粘土とし、最後に0.25mm/minの変位速度で定体積せん断に供する。なお、リモールド試料と不搅乱試料の違いをチェックするために、不搅乱試料を400kPaで圧密した正規圧密粘土についても同じ試験（ただし、OCR=1〜10）を実施した。

実施した試験の条件、数量などはまとめて表-1に示す。

5. 有明粘土の試験結果

DSTおよびDSST試験より得られた有明粘土のせん断強度$\tau_{f}(DST)$と$\tau_{f}(DSST)$を深さに対してプロック

図-7 DSTとDSSTより得られた有明粘土のせん断強度

不搅乱試料の品質は、σ'_{vo}で再圧縮した場合の体積変化量εとせん断試験における破壊時のひずみγ_fによって調査される。特にεによって試料の品質を定量的に評価する方法が提案されているが[17]。εは、品質だけでなく対象土の圧縮性や過圧密比にも影響されることが予想される。この問題についての議論はさておき、DSTおよびDSSTより得られたεとγ_fを図-8に示す。DSTでは
(2) 圧密時間の影響

一般に圧密時間が長いほど土のせん断強度は増加する。しかし、今回実施したDSTとDSSTでは圧密
圧はσ′voであり、通常の粘土地盤が幾分変圧密状
態にあることを考慮すれば、圧密時間の長短はせん
断強度に特に影響を及ぼさないと考えられる。事実
Berre18) は、Drämen粘土について圧密時間を変え
てDSSTを行い、圧密時間が18時間のときのせん断
強度は、40%の場合の1.5%だけ大きいにすぎないこと
を報告している。

(3) 載荷速度

半沢ら15) は不摂乱試料のKo圧密三軸圧縮試験か
ら有明粘土について載荷速度の影響を調べた。その
結果を図-9に示す。DST(1.25%/min)の載荷速度は、
DSST(0.1%/min)のそれよりおよそ1オーダー大きい。
図-9より、せん断ひずみ速度0.1%/minで載荷された

\(\gamma_f = \frac{D_r}{H_0} \) \quad (7)

ここに， \(\gamma_f \) は破壊時の変位， \(D_r \) は破壊時の変位， \(H_0 \) はせん断開始前の供
試体高さである。

図に示すように、両試験における \(\tau \) と \(\gamma_f \) に特に
有意な違いは認められない。従って試料の品質の違い
が図-7に示す \(\tau_f(DST) \) と \(\tau_f(DSST) \) の違いの要因で
はないことは明らかである。

(4) せん断機構

3. で述べたように、太田ら11) はDSTとDSSTの間の
せん断強度の差異を実験的に示す。したがって、

供試体のせん断強度は、せん断ひずみ速度1%/minで
載荷された供試体のせん断強度に比べて、上部粘土
で0.88倍，下部粘土で0.86倍となる。よって，載荷
速度に対する補正係数 \(\mu \) は次式にて与えられる。

\[
\mu = 0.88 \quad (上部粘土) \quad (8)
\]

\[
\mu = 0.86 \quad (下部粘土) \quad (9)
\]

半沢ら15) は有明粘土の三軸圧縮試験における非排
水強度比として次の値を与えている。

\[
(\tau_f / \sigma'_v)_{NC} = 0.31 \quad (上部粘土) \quad (11)
\]

\[
(\tau_f / \sigma'_v)_{NC} = 0.32 \quad (下部粘土) \quad (12)
\]

そこで式(10)に式(11)および式(12)を代入して
有明粘土の内部摩擦角を計算すると，上部粘土が
27°，下部粘土が28°となる。これらの値を用いて式
(3)～(6)を計算し，cosh \beta を求め，その逆数を補正
係数とする。計算結果を表-2に示す。なお，A
0.8としてよい。せん断機構の違いについての
補正係数 \(\mu \) は次式にて与えられる。

\[
\mu = 0.92 \quad (上部粘土) \quad (13)
\]

\[
\mu = 0.89 \quad (下部粘土) \quad (14)
\]

式(8)と式(13)および式(9)と式(14)より，載荷速
度とせん断機構の違いを考慮すると， \(\tau_f(DSST) \) に差
なせん断強度 \(\tau_f(DST) \) は次式より求めることができる。
表-2 DSTとDSSTのせん断機構の違いに対する補正値を求めるための物性値（有明粘土）

<table>
<thead>
<tr>
<th></th>
<th>上部粘土</th>
<th>下部粘土</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_a</td>
<td>0.54</td>
<td>0.49</td>
</tr>
<tr>
<td>ϕ'</td>
<td>27°</td>
<td>28°</td>
</tr>
<tr>
<td>m</td>
<td>1.07</td>
<td>1.11</td>
</tr>
<tr>
<td>η_0</td>
<td>0.66</td>
<td>0.77</td>
</tr>
<tr>
<td>Λ</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>β</td>
<td>0.427</td>
<td>0.429</td>
</tr>
<tr>
<td>$\cosh \beta$</td>
<td>1.093</td>
<td>1.117</td>
</tr>
<tr>
<td>補正係数</td>
<td>0.92</td>
<td>0.89</td>
</tr>
</tbody>
</table>

図-10 DSTおよびDSSTより得られた有明粘土のせん断強度（補正後）

$$\tau_{fe(DST)} = \mu R \times \frac{\mu M \times \tau_{f(DST)}}{\sigma'},$$

$$= 0.81 \tau_{f(DST)} \quad \text{(上部粘土)} \quad (15)$$

$$= 0.77 \tau_{f(DST)} \quad \text{(下部粘土)} \quad (16)$$

式(15)および式(16)を用いて補正を行った後の有明粘土のDSTとDSSTによるせん断強度の深さ方向分布を図-10に示す。これによると、補正後のDSTにより得られたせん断強度はDSTによるせん断強度よりはほぼ一致する。

(5) 応力経路

図-11(a)に上部粘土（試験番号5）および下部粘土（試験番号15）のDSTの応力経路を示す。試験番号は概略の深さ(a)に相当する。同様に、対応する深さのDSSTの応力経路を図-11(b)に示す。二つの応力経路を比較すると、まず第1に、下部粘土の挙動と上部粘土のそれはあまり差がないことがわかる。

図-11 DSTおよびDSSTによる応力経路（有明粘土）

第2回、DSSTの応力経路がDSTのそれに比べて左側（より大きな有効応力の減少）に位置することが読みとれる。この原因は、DSSTにおけるひずみ速度がDSTの約1/10のため、いわゆるクリープの進行に伴うより大きな過剰間隙水圧が発揮されたために他ならない。

(6) せん断剛性率

次に、DSTより得られるせん断剛性率G50とDSTより得られる見掛けのG50 (=G50(ap))を比較してみよう。DSTより得られるG50(ap)は次式にて算出した。

$$G50(ap) = \frac{\tau_{f/2}}{D(at ; \tau_{f/2})/H_0} \quad (17)$$

ここで、D(at ; $\tau_{f/2}$) : $\tau_{f/2}$におけるせん断変位,

H_0 : 一試体の初期高さ

このようにして得られたG50(ap)とG50を $\tau_{f(DST)}$ と $\tau_{f(DSST)}$ で正規化した結果を図-12に示す。G50/ $\tau_{f(DST)}$ とG50/ $\tau_{f(DSST)}$ より若干低い値の値を示すが、材料の乱れや試験法の違いによるG50やE50のような変形係数の変化は、せん断強度の変化よりも遙かに鋭敏であることを考えると、図-12に示すG50/ap/ $\tau_{f(DST)}$ とG50/ $\tau_{f(DSST)}$ は実用上一致するとみてよいだろう。
6. Drammen粘土の試験結果

DST1およびDSST1により得られたDrammen粘土のせん断強度を図-13に示す。有明粘土と同様，τf(DST)＞τf(DSST)なる結果が得られた。以下，有明粘土についてと同様な検討を行ってみよう。

(1) 試料の乱れ

DST1およびDSST1におけるεvとγfを図-14に示す。平均εvは5.1%(DST)，3.5%(DSST)で，一方，γfは5.5%(DST)，3.1%(DSST)である。いずれの値もDSTのほうが大きく，試料選択過程で若干乱乱されたことが推察される。

(2) 荷重速度

NGI9は上部Drammen粘土について，種々の荷重速度(0.12%/min, 0.011%/minおよび0.0036%/min)でDSSTを実施した。その結果を図-8と同様，τf/τf(1.0%/min)とひずみ速度の関係に整理した結果を図-15に示す。DST1およびDSST1のひずみ速度は，それぞれ1.25%/minと0.1%/minなので，μRは下記のように得られる。

\[\mu R = 0.91/1.02 = 0.89 \]
表-3 DSTとDSSTのせん断機構の違いに対する補正値を求めための物性値（Drammen粘土）

<table>
<thead>
<tr>
<th></th>
<th>上部粘土</th>
<th>下部粘土</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_s</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>ϕ'</td>
<td>25°</td>
<td>25°</td>
</tr>
<tr>
<td>ν</td>
<td>0.98</td>
<td>1.03</td>
</tr>
<tr>
<td>Λ</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>β</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>$\cosh \beta$</td>
<td>1.51</td>
<td>1.51</td>
</tr>
<tr>
<td>補正係数</td>
<td>0.87</td>
<td>0.88</td>
</tr>
</tbody>
</table>

(3) せん断機構の違い

NGIが上部および下部Drammen粘土について実施したKo圧密三軸圧縮試験より得られたKo値は、両者とも等しく0.49である。またこの試験から求めた強度増加率はそれぞれ0.28（上部）と0.29（下部）で、式（10）よりϕ'を求めると25°（上部）と26°（下部）が得られる。これらの値を用いて式（3）〜式（6）を計算し、$\cosh \beta$を求め、その逆数を補正係数とした。なお有明粘土と同様、Λは0.8とし、計算結果を表-3に示す。

よって有明粘土と同様な方法でμは次のように求められる。

$$\mu \times 0.87 = 0.88 \quad \text{(上部粘土)} \quad (19)$$

$$\mu \times 0.87 = 0.88 \quad \text{(下部粘土)} \quad (20)$$

式（18）〜式（20）を用いて載荷速度とせん断機構の違いの両者に対する補正を行った後のt_fは式（21）および式（22）で与えられる。

$$t_f \text{(DST)} = \mu R \times \mu \times \mu \times t_f \text{(DST)}$$

$$= 0.77 \times \mu \times 0.77 \quad \text{(上部粘土)} \quad (21)$$

$$= 0.78 \times \mu \times 0.78 \quad \text{(下部粘土)} \quad (22)$$

式（21）と式（22）を用いて補正した後のDrammen粘土のt_fとt_f（DSST）を深さに対してプロットした結果を図-16に示す。両者は良い一致を示す。

(4) せん断剛性率

DSTおよびDSSTより得られた$G_0(\text{ap})$と$G_0(\text{ap})$をt_fで正規化した値、$G_0(\text{ap})/t_f$（DST）、$G_0(\text{ap})/t_f$（DSST）の深さ方向分布を図-17に示す。これらの値には有意な違いは認められないが、注目すべきことは、下部粘土の$G_0(\text{ap})/t_f$（DST）および$G_0(\text{ap})/t_f$（DSST）が深さとともに急激に減少することである。一方、図-16に示すように、下部粘土のt_f（DST）とt_f（DSST）は深さとともにかなりの勾配で増加している。DSTより得られた下部粘土の代表的なせん断応力〜変位曲線を図-18に示す。図-18（ピーク強度のときの変位）およ
7. 過圧密Drammen粘土の試験結果

前節では不搅乱試料をそのσ′で再圧縮して定体積せん断試験に供する試験結果について報告した。本節では、上部Drammen粘土について実施した人工過圧密粘土についてDSTとDSST（表-1に示したDST2およびDSST2）の結果について報告する。

本試験ではまずリモールドした試料と不搅乱試料を400kPaで圧密（24時間）して正規圧密粘土を作成し、次いで種々のOCR=1, 2, 4, 5, 10, 20および40、ただし、不搅乱試料についてはOCR=1, 3および10のもとで膨張（24時間）させ定体積せん断に供した。載荷速度は、0.1mm/min（DST2）および0.1%/min（DSST2）である。リモールドおよび不搅乱試料のDST2およびDSST2より得られたせん断応力～変位曲線を図-19に示す。当然のことながら二つの間に有意な違いは認められない。

DST2とDSST2より得られたτ/σを、圧密（膨張）応力σ′で正規化したτ/σ′をOCRに対してプロットした結果を図-20に示す。DST1、DST1の結果と異なり、両者は極めて良い一致を示す。過圧密の影響は、太田らのDSTとDSSTのせん断機構の違いに関する理論式に係わらないので、前節で求めた補正係数（0.87）を適用する。載荷速度の影響についての補正係数は、前節に示した手法により下記のように求められる。

\[
\mu R = 0.91 / 0.97 = 0.93
\] (23)

従って、せん断機構の違いと載荷速度の両者を取り入れた補正係数は次式で与えられる。

\[
\mu R \times \mu R = 0.87 \times 0.93 = 0.81
\] (24)

式(24)を用いて補正したτ/σ(DST)とτ/σ(DSST)をOCRに対してプロットした結果を図-21に示す。当然ながらτ/σ(DST)が低い値を示す。

図-18 DST1より得られた下部Drammen粘土のせん断応力～変位曲線
図-19 リモールドおよび不搅乱試料より作成した人工過圧密粘土のDST2より得られた応力～変位曲線（Drammen粘土）
図-20 DST2とDSST2より得られた正規化したせん断強度とOCRの関係（Drammen粘土）
図-21 DST2とDSST2より得られた正規化したせん断強度とOCRの関係（補正後）（Drammen粘土）
図22 DST2とDSST2より得られたG50/τfとOCRの関係
（Drømmen粘土）

DST2およびDSST2より得られたG50/τfを図22に示す。DST1およびDSST1では両者が良く一致したが、この場合はDST2より得られた結果が高い値を示す。

8. 結論

九州の有明粘土とノルウェーのDrømmen粘土について実施した一連のDSTとDSST結果について報告した。その結果次のような結論と推察が得られた。

（1）不搅乱試料をその土被り圧で再圧縮した後の、せん断に供する[DST1]より得られたせん断強度（τf(DST1)）とせん断剛性率(G50(ap))は、同じ条件での[DSST]より得られる値(τf(DSST))およびG50よりも高い値を示す。

（2）G50(ap)とG50をそれぞれのせん断強度で正規化した値、G50(ap)/τf(DST)とG50/τf(DSST)は比較的良い一致を示す。

（3）DSTとDSSTの載荷速度とせん断機構の違いによる補正係数として同様のような値が得られた。

\[\mu_\times \mu_\times = (0.77 \sim 0.81) \] （有明粘土）
\[= (0.77 \sim 0.78) \] （Drømmen粘土）

（4）DST1より得られたτf(DST1)上記の補正係数を乗じたせん断強度は、DSST1より得られたτf(DSST)と良い一致を示した。

（5）しかし人工過圧密粘土について実施したDST2とDSST2より得られたせん断強度およびせん断剛性率については、このような補正が有効でないことが判明した。この理由は両試験機の機械的な問題か、実験誤差のかか、人工粘土と自然粘土（不搅乱粘土）の持つ本質的な違いなのか現状では不明だが今後検討課題としたい。

参考文献

1) 三笠正人：新型一重せん断試験機について，土木学会第15回年次学術講演会講演概要，pp. 45-48，1960
3) 半沢秀郎：土のせん断試験結果の実務への適用，直接せん断試験の方法と適用に関するシンポジウム発表論文集，pp. 87-94，1995.
4) 土質工学会編：土質試験法第6編の力学的性質の試験（II），pp. 423-571，1979.
A COMPARATIVE STUDY ON SHEAR STRENGTH OF MARINE CLAYS BY DIRECT SHEAR AND DIRECT SIMPLE SHEAR TESTS

Kiyoshi TSUJI, Yi-Xin. TANG and Tom LUNNE

A comparative study of the Mikasa Direct Shear Test (DST) and the NGI Direct Simple Shear Test (DSST) has been carried out on shear properties of two marine clays. Samples from Ariake clay and Norwegian Drammen clay have been subjected to both types of test. An evaluation of these test results and a theoretical consideration on the different shearing mechanisms in these testing types are presented.