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The purpose of this paper is to use the seismic response data of one 5-span continuous box-
girder bridge to identify the dynamic characteristics of the system from different earthquake
loading. The spectral finite element method was used by considering the flexural wave in beam
to form the dynamic stiffness matrix of the substructure. Through matrix condensation the
interior nodal displacement can be expressed in terms of the boundary nodal displacements.
The identification was performed by using the recorded nodal displacement of the bridge to
identify the EI-value and damping factor n of the substructure. Three seismic event data
sets were used from the bridge strong motion instrumentation array. It is found that the
identified EI-values are very stable even for different intensity of earthquake loading while
the damping value may change from seismic event to event.
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1. INTRODUCTION

There has been a considerable demand for

more accurate techniques to detect and lo-~

cate damage in large structures. Damage will
cause the stiffness distribution in the structure
to change, which may be detected by measur-
ing its dynamic response. Among the dynamic
response analysis, reference!) used the natu-
ral frequencies only to detect damage. In
reference?, used is made of the property that
the curvature of the mode shapes increases at
the location of the damage. In reference?,
damage detection was carried out by two suc-
cessive procedures. At the beginning, the
eigensolution of the structure is identified us-
ing a modal parameter identification technique
and the system response. Then, the identified
eigensolution is used together with properties
of the eigenvalue problem to detect the dam-
age components.

Most civil engineering structures such as
multi-story buildings and bridges accumulate
damage gradually during their service lives.

From the viewpoint of serviceability and safety
of structures, an important issue is the identi-
fication and detection of structural damage,
particularly after earthquakes. In this re-
gards, there has been many noticeable re-
search works using the system identification
techniques (SI) to study the dynamic response
of structures subjected to earthquake excita-
tions (e.g., Ref.¥~):6):7)). The aim is to identify
structural parameters (e.g., stiffness), which are
then compared with the original design values,
thereby providing a means to locate and quan-
tify the structural changes due to deterioration
or damage.

In general, the transient response of civil en-
gineering structures can be obtained by using
the methodology of finite elements combined
with a suitable scheme to solve the equation of
motion in time domain. An approach similar
in style to that of the finite element method
(FEM) of analysis is the spectral representa-
tion. The spectral formulation begins with
the equation of motion of the beam including
the inertia term®. This spectral approach to
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dynamic problems temporarily removes time
from the description that the effect of damp-
ing can easily be incorporated by changing the
spectrum relation. The dynamic stiffness of
the beam element can be established in spec-
tral representation. If the response is known
at some location the inverse problems can be
performed. Application of the spectral finite
element method to the parametric identifica-
tion of frames using transient data had been
employed through simulation®). The purpose
of this paper is to use the spectral finite el-
ement method to the identification of bridge
dynamic characteristics from seismic response
data. Research work will be concentrated on
the substructural identification.

2. SEISMIC RESPONSE DATA OF
NEW-LIAN RIVER BRIDGE

The New-Lian River Bridge (NLRB), a con-
tinuous five-span prestressed box-girder bridge,
is located at the northeast coast of Taiwan.
This bridge was instrumented in November
1994 by Central Weather Bureau. This instru-
mentation comprises single-axis, two-axes and
triaxial force-balanced accelerometers with 16-
bit resolution which makes the apparatus ca-
pable of recording high-resolution ground mo-
tion and structural response within +2g over

a nominal frequency range of 0 to 100Hz and
with a pre-event and post-event memory. A to-
tal of 24 strong motion accelerometers along its
deck, at its abutments and a nearby free-field
location (as shown in Fig.1). Most of these in-
struments were triggered during Feb. 23, 1995,
June 25, 1995 and March 5, 1996 earthquakes,
providing one of the most extensive array of
strong motion measurements. Table 1 shows
the recorded maximum acceleration from the
recorded accelerograms. The event of June 25,
1995 earthquake induced significant response
at some of the measurement points. Fig.2
shows some recorded acceleration from these
three events.

Preliminary analysis on the seismic response
data of the bridge had been discussed'?). Us-
ing ARX-model for case of multi-inputs/single
output (multi-inputs denotes the multiple-
supported excitations from different abut-
ments) the identified first two dominant vi-
bration frequencies in transverse direction is
9.04rad/sec and 12.5rad/sec, respectively. Ex-
cept the global system identification, substruc-
tural system identification was also applied.
Using lumped mass model a bridge-girder sub-
structure shown in Fig.3 is selected as a sub-
structural system. The motion equation in
transverse direction of mass m; (mass lumped
at the top of the pier) can be formulated:
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Fig.1 Instrumentation layout at New-Lian River Bridge.
The motion in the east direction represents the transverse motion.
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Table 1 Recorded maximum peak acceleration from instrumentations at
Oew-Lian River Bridge for 1995-2-23, 1995-6-25, and 1996-3-5 carthquakes.
Earthquake : Feb. 23, 1995 | Earthquake : June 25,1995 | Earthquake : March 5, 1996
M=577 D=217km|M=650 D=399km| M=64 D=28km

EW NS VR EW NS VR EW NS VR
c1 16 - - 120 - - 9.4 - -
c2 19 13.4 8.3 125 131 48 14.3 8.2 4.8
c3 - - 9.5 - 107 58 - 13.9 4.7
ca 18 12.7 8.7 104 101 40 14.07 | 10.63 43
c5 15 15.1 - 145 78 - 11.68 - -
A1 58 - - 511 - - 23.4 - -
A2 28 - - 188 - - 24.6 - -
A3 51 19.2 - 381 212 - 84.5 23.6 -
A4 48 - - 343 166 - 61.8 24.2 -
A5 43 14.9 - 223 201 - 28.5 - -
A6 86 - - 693 - - 31.5 - -
B1 83 - 54 689 - 960 | 107.5 - 41.6
B2 51 - 60 557 -- 521 48.5 - 50.5
Unit: Gal

EW: Corresponding to transverse direction
NS: Corresponding to longitudinal direction
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Fig.2 Part of the recorded acceleration in transverse direction at station B2, A4, Bl and C4 from
the New-Lian River Bridge strong motion instrumentation for three different earthquakes.

m; i + ¢; u; + ki ug

= —m; g (t)

= Cip1 (s — Big) — Kigr (ui —uiyq)

=iy (W — 1) — kg (ui —u—p) (1)

Peak Value
557 gal

343 gal

689 gal

104 gal

where k; and ¢; are the stiffness and damp-

ing of bridge pier in transverse direction, k;

and ¢, are the girder stiffness and damping
between mass ¢ and mass ¢+ 1, k;,_; and ¢;_;

are the girder stiffness and damping between

mass ¢ and mass ¢ — 1. In Eq. (1) u;_y, w

and wu;,, are recorded bridge motion at lo-

cations i — 1, ¢ and ¢+ 1 during earthquake.
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Time domain identification scheme, such as
Kalman filter technique, can be used to iden-
tify the modal parameters of the substructural
system (i.e., c;/mi, kifm;, c;_y/mi, ki_y/ms,
¢;y1/m; and k;1/m;). Basically it is similar to
use the shear type model between two lumped
masses. Table 2 shows the estimated stiffness
and damping of the NLRB from the data of
February 23, 1995 earthquake. The result in-
dicates the identified equivalent stiffness and
damping of the substructure between two con-
secutive measurement points. Difficulty may
raise if more elements are used in the model
between two consecutive measurements. An
approach from the view point of spectral finite
element method provides more powerful on
the formulation of dynamic problems.
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Fig.3 (a) A bridge-girder substructure system,
(b) lumped mass model of the bridge-girder
system for motion in transverse direction.

Table 2 Estimated modal parameters from 1995-2-23
earthquake of the T-section of New-Lian
River Bridge (Pier: A4-C4, Girder A4-B2,
and Girder: A4-Bl1).

Feb. 23, 1995 earthquake — Transverse direction

Girder: Girder:
A4-C4 section A4-B2 section A4-B1 section

Pier:

K:/m: = 9133 | Ki_1/m: = 15473 | K11 /m: = 74.459

C:/m: = 0.8407| C;_/m: = 0.8889 | C,(/m: = 0.7395

3. SPECTRAL ANALYSIS OF
FLEXURAL WAVES IN BEAMS

Consider the beam element to have constant
properties along its length, then the equation of
motion (neglecting the rotational inertia term
pI $) can be written in the form

*v(z,t) 8v(z,t) tpA 8%v(z,t)

Bl =% 14 otz

=0
@)

where p A is the mass density per unit length
of the beam. The displacements are given by
their spectral representation as:

v(z,t) = Zﬁn(m,wn) elwnt 3)

The spectral components, 4, satisfy the fol-
lowing equation of motion
d*on
dz?

Giving the general solution for the deflection
curve as

EI —(WEpA—iwnn) d(z,ws) =0 (4)

On(x,wy) =Cp e #n% + D, e7knc
+ Epe~ikn(L=2) L F e=kn(L=2)(5)

where
ko= [(w2pA—iwn n)/EI]1/4

and L is the length of the beam element. The
first two terms are appropriate to wave moving
in the plus direction and the second two terms
to backward-moving waves.

Assume that there are no external loads ap-
plied between two ends of the beam element
(between node 1 and node 2), as shown in
Fig.4. At each node, there are two essential
beam actions, namely, the bending moment
and shear force. The corresponding nodal de-
gree of freedom are the rotation ¢(z,t) and the
vertical displacement v(z,t). Since the beam
element is a two-node system, then the stiff-
ness matrix is of order 4 x4 because there must
be two degree-of-freedom at each node. The
matrix, [G], is setup by first relating the coef-
ficients in Eq. (5) to the nodal displacements
as

{Cny Dn, Em Fn}T = [é]{{)lm é]naﬁZnaé&Zn}T
(6)
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where %;, and q@m (: = 1,2) denote the nodal
vertical displacement and nodal rotation at
node i. Since the bending moment and shear
force are related to the deflection curve

2~
M(z,wy,) = BT 2-2Z%n)
8132 (7)
and  V(z,w,) = —EI (@, wn)
? n - az:;

Further, these member force values and the
nodal force values are related by

Vvl’n, = V(O, wn) 3 Mln = M(O, w’n)
Von = V(van) v My, = M(L’ w") (8)

Defining the nodal forces and moments and the
corresponding generalized nodal displacements
as column matrices, the equilibrium equation
between nodal responses and nodal forces can
be obtained:

Vln 73171
M, bin
| _ [K} h1 ©)
Von 4x4 Doy,
M2n ¢;2n

where [K] is the dynamic stiffness matrix
of beam element in spectral representation.
Through assembling the dynamic stiffness of
beam elements the stiffness matrix of substruc-
ture can be constructed.

“{

Vye By

Vor By
i
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Beam Element
(constant EI
Vl ) V2

Fig.4 Nodal loads and degree of freedom of
beam element (consider only flexural
deformation).

(1) Identification of Substructure

The dynamic structural stiffness matrix is as-
sembled in a completely analogous way to that
used for the static stiffness. That is, the ele-
ments can be assembled into structural system

form as R A

%] {a} = {7}
where {P} is the nodal load of the substruc-
ture system in frequency domain. If the nodal

(10)

displacement vector {i} is solved at each fre-
quency, then its time behavior is reconstructed
simply by using the FFT inverse. From the sys-
tem identification point of view the EI-value
and n-value of beam element are unknown if
only the flexural waves in beam are considered.
Parametric identification of the frame member
can be formulated as the optimization problem:

Minimize J

{ e [K<wn,é>]"l{f>(wn>}} — ¥ {u(t)}

(11)

2

where F(-) denotes the Fourier transformation
of nodal displacement u(t) and § is the vec-
tor of unknown parameters (such as EI and 7
values) and |- | denotes the absolute value of
complex value. m is the number of frequen-
cies to be included. Any nonlinear optimiza-
tion program, such as Gauss-Newton method,
can solve the problem and estimate the model
parameters.

4. SUBSTRUCTURAL IDENTIFICATION
OF A 5-SPAN CONTINUOUS BRIDGE

Based on the above discussion on the dy-
namic stiffness of a uniform beam, the assem-
bly of the dynamic stiffness from a specified
substructure and the application of the present
method to seismic response data of a bridge
are discussed. It has to be pointed out that not
all the information in the displacement vector
{4} and force vector {P} can be measured
directly. Stiffness condensation should be ap-
plied to match the degree of freedom where
measurements can be obtained. Application
of the spectral beam element to this bridge
for the purpose of identification was discussed.
Consider the substructural system of the bridge
as shown in Fig.3a, the complete substructural
system can be divided into five beam elements.
Four elements are assumed in the two over-
hanging girder and one element is assumed
for the bridge pier. Because the variation of
the girder cross section it is assumed that two
elements are used in each of the over hanging
girder with different EI value; as shown in
Fig.5a.
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(a) Pier-Girder Substructure

Y(Vertical)

X(Longitudinal)
Z(Transverse)

(b) Girder Substructure

Fig.5 (a) Pier-girder substructural system (B2-A4-Bl). The nodal displacements are
indicated and three different EI-values of beam element are assumed.
(b) Girder substructural system (A4-B1-A3).

(1) Formulation

Consider the pier-girder (T-section) substruc-
ture. The dynamic stiffness of the substructure
in transverse direction should be constructed
first. Based on Eq. (10), the nodal force and
displacement relationship is shown as Eq. (12).

In Eq. (12), 44, 13, Gs, 47 and #7 can be ob-
tained directly from the measurement. b1,
#3 and q35 can not be measured directly but
can be calculated from: ¢(z,t) = du(z, t)/d:c.

The bridge deck displacement in transverse di-
rection, u(x,t), can be obtained from Spline

approximation by requiring that u(z;,t) be the -

recorded motion along the bridge deck in trans-
verse direction at location “z;”. Condensation
must be performed by describing the internal
nodal deformation in terms of the boundary
nodal deformation. In this example, there is
no external load acts at nodal points 2, 3 and 4,

( A‘; Y[ &0 Ku Ki Ky
! Ky Kpn Kpn Ky
V2 Ky Kp Ky Kj K K
My Ky Ko Kj; K; K Ky
V3 Ks3 Ksa K K5 Kg
MI% L K63 K(,4 Kgs Kgﬁ K67
$ % Kis K K
M, Kgs Kg K,
Vs Ky
M; Ko7
M Kis
v K35
L i ) L Kiss

the nodal forces and moments are described as
zero, i.e., Vs, My, Va, M3, Vi, M4 are all zeros.
The boundary nodal forces are V;, My, Vs, Ms,
V; and M,;. Among them M, is assumed as
zero because a hinge support was assumed at
the bottom of the bridge pier. This assump-
tion was based on the identification result of
pier stiffness “k” from seismic response data
using lumped mass model (k = 5.16 x 10® N/m)
and also on the calculated pier stiffness from
finite element model (k = 4.21 x 108 N/m).
The identification result and the design finite
element model both have a consistent pier
stiffness if hinge support was assumed at the
bottom of the pier (Ref.!?)). Since the forces
at the boundary of the substructure are un-
known, then Eq. (12) can be rearranged by
separating interior nodes and exterior nodes
in the following form:

R
2
U2
2
Ksg Ksy  Ksiz Kz o3
Kg ?3 L
K7'8 Koqg K719 < Ug
Kz Ky Kz b4
Kog Ko Koo Us
Kios Kios Ko ?s
Kyun Kuw Knais o
Kin Kin Kon i
Kizu Kppp Ko | L ¢ )

(12)
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(V> ) dy )
M %2
V3 i3
M; s
Vi Uy
1\214 B + A ?4

! M7\ _ _(_7>.<.7)_,'.£71(6_)_ ! # L (13)

- - - C + D ---
v (6x7) . (6x6) iy
Ml ¢1
Vs ds
MS 9?5
M(, P

| % ) [ a7 )

Partition the matrix in Eq. (13) is based on the
separation of the boundary nodal points from
internal nodal points of the substructure. It
is also assumed that ¢g is equal to zero for
this case which means My must be provided in
order to have ¢ = 0 (no rotation on bridge
deck). Because of this assumption Mg is pre-
scribed as the external moment and assigned it
as external load to prevent rotation. Then the
nodal force of the internal nodes can be ex-
tracted from Eq. (13) and set to zero because
of no external loads:

’ ~

V2 ( Uz )
M, 2
V3 i3
M; >=[(7§7)] ?3 ¢
Va Uy i
i b
L M7 ) \ ¢7 7
1y
)
A as | _ { }
+ s L tolb (14
(7><6)] ?5 ( )
os
iy

It has been pointed out that M; is also as-
sumed to be zero in this study because the
stiffness of the pier under such assumption is
much more consistent with the design value.
Since there is no external load at the internal

nodes, then Eq. (14) can be set to zero, so the
internal nodal displacement can be calculated
and expressed in terms of the boundary nodal
displacement:

( )

y .
i i
i3 -1 " u;
EERIE:
: :
\ ¢7 b,
i
?51
=|:(7C><;6)} ;2 (15)
Y
iy

The [B] matrix and [A] matrix in Eq. (15)
contain unknown parameters of the spectral
elements (EI value and 75 value of element)
and [G] matrix is equal to —[B]7![4]. It is
also a frequency dependent matrix with un-
known parameters. The displacement vector
on the right hand side of Eq. (15) is a known
vector because the boundary displacement and
rotation can be obtained from the records of
bridge instrumentation. Since one of the in-
ternal nodal displacement, u3(t) or 43(w) in
frequency domain, can also be obtained di-
rectly from the strong motion instrumentation,
the optimization problem for this particular
substructure can be formulated in frequency
domain:

Minimize J = [5° |is(w)
- <G31 i (w) + G2 1 (w) + G33 dis(w)
+ G34 $s5(w) + Gss Pe(w) + G ﬁ7(w)) ,2 dw

(16)

where “~” denotes the Fourier transform of
the nodal displacement. The nodal displace-
ment, such as ¢, and ¢s in Eq. (16), may
be obtained from the spline approximation of
bridge deck deformation in transverse direction
as discussed before.
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(2) Results of Identification

To illustrate the method, the same pier-girder
substructure of the bridge (the T-section in-
cludes two over hang girders and the pier
system) will be analyzed, as shown in Fig.5.
Table 3 shows the identified El-value and g
value between points B2 and A4, C4 and A4,
and A4 and Bl. The identified EI-value for
each element are quite similar even for dif-
ferent seismic event. The p-value is larger
for the case of 1995-6-25 earthquake. This
is quite reasonable because for the 1995-6-
25 earthquake larger structural responses were
measured. From Eq. (15) the unknown inte-
rior nodal displacement can also be retrieved.
From Eq. (13) the boundary forces (bending
moment and shear force) can also be retrieved
as follows:

R y
14 4
oy #2
Vi || C 433
M5 = (6x7) ﬂ3
M, 2
7 4
7 \ ¢7 ),
3
o
D )
+ [(6><6):| ¢2 (17)
®6
(%

Table 3 Identified model parameters of flexural
beam (EI and 7) for the pier-girder

is found that significant bending moment and
shear force were identified at node “g”. Fig.6
and Fig.7 shows the retrieved time history of
the bending moment and shear force at some
of the nodal points. Comparison on the shear
force time history from different seismic event
at point A is shown in Fig.8. It has to be
pointed out that the identified shear force at
the juncture of pier and girder in transverse di-
rection can be balanced [such as 6190kN (point
c) + 10640kN (point d) = 16382kN (point g)].
These values can be used to check with the
design value of the bridge for safety evaluation.

Table 4a Retrieved maximum bending moment at
each nodal point of the pier-girder
substructure (B2-A4-Bl) from three
earthquake loadings.

Maximum Bending Moment (KN-m)

1995-2-23 1995-6-25 1996-3-5

earthquak earthquak earthquak
a 17562 116630 15155
b 11929 78080 10515
c 19558 148830 26349
d 19558 148830 26439
e 14500 102100 17437
f 18718 169840 20629
g 170030 1124400 223851
k 0 0 ]

Yertical

tong!tudinal
Transverse

Table 4b Retrieved maximum shear force at each
nodal point of the pier-girder
substructure (B2-A4-B1) from three

substructure. . earthquake loadings.
1995-2-23 1995-6-25 1996-3-5
earthquake earthquake earthquake Maxirmum Shear Force (KN) - Transverse direction
EI 9 9 9
1 6.75x10 6.78x10 5.10x10 1995.2.23 1995625 1996.3.5
Bl | 1.01x10!° 1.02x1010 7.70x10° earthquake carthquake carthquake
I3 | 2.50x10!° 2.64x100 2.53x101° a 519 3310 si1
] 118, 2. b 346 2980 232
! 4. c 798 6190 1121
22 68. 180. 39. d 1570 10640 2091
e 613 5250 692
3 91. 243. 53. f 614 5030 695
Note: EI (KN-m2) g 2318 16382 3203
% (kpa-sec) h 3870 24661 4953
)::vm &
b 4
Table 4a and Table 4b shows the retrieved max- el s, Lonattudinat '
c3

imum bending moment and shear force at each
nodal point of the substructure (T-section). It
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Fig.6 Retrieved time history of moment (kN-m) at nodal points of “a” and “¢” for the
pier-girder substructure (B2-A4-B1) during the 1995-6-25 earthquake.
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Fig.7 Retrieved time history of shear force (kN) at nodal points of “c”, “d”, and “g” for the
pier-girder substructure (B2-A4-Bl) during the 1995-6-25 earthquake.
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Fig.8 Comparison on the retrieved time history of shear force (kN) at nodal point “A” among three
different earthquake loadings: 1995-2-23, 1995-6-25, and 1996-2-3 earthquakes, respectively.

49 (499)



Fig.9 shows the comparison on the rotation
at node A4 (i.e., ¢3(¢)) between the retrieved
rotation from Eq. (15) and the spline approxi-
mation from transverse motion along the deck.
Good agreement between them was observed
which confirm the accuracy of the proposed
method. Fig.10 shows the retrieved displace-
ment at nodes “b”, “¢” and “d”. The maximum
displacement is also indicated in this figure.

Next, the similar identification procedure can
be applied to the bridge girder, as shown in
Fig. 5(b). In this case, however, the rota-
tional time histories at both ends of the girder
are needed. The difficulty can be overcome
by interpolating from the instrumental data
along the deck in transverse direction. But
basically speaking, the time-history of rotation
at boundary nodes due to strong earthquake
are more conceivable than those due to weak
earthquake. In the present study only the
earthquake of June 25, 1995 is considered.
From the girder between two-piers A3 and
A4, the identified EI-value between nodes d
and e is 9.75 x 10° and between nodes e and
f is 6.50 x 10°. It is worthy to be mentioned
that the identified EI-value is consistent with
the result shown in Table 3 for those of T-
section from different substructure. These two
different substructures, treated independently,
have same result which enhance the reliability
of the identification performance.
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Fig.9 Comparison on the rotation at
Node A4 between retrieved rotation
from spectral FEM and estimated
rotation from measurements.
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Fig.10 (a) Recorded displacement at station A4
(Location ¢ or d) in transverse direction
for 1995-6-25 earthquake.

(b) Retrieved displacement at location b and
location e from the 1995-6-25 earthquake.

5. CONCLUSIONS

For the identification of bridge structure from
its seismic response data the spectral finite el-
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ement method was used by considering the
flexural waves in beam. The dynamic stiffness
of beam element was developed first. Then dy-
namic structural stiffness matrix of a substruc-
ture is assembled in a completely analogous
way to that used for the static analysis. EI-
value and 7-value of each beam element are
assumed as modal parameters. Matrix opera-
tion is performed in such a way that the inte-
rior nodal displacements of substructure can be
expressed in terms of the boundary nodal dis-
placements (it is a known displacement vector).
Identification can be performed in frequency
domain through such a displacement relation-
ship. From the analysis of the seismic response
data of a 5-span continuous box-girder pre-
stressed bridge, the following conclusions are
drawn:

1. The spectral element representation begins
with the equation of motion of the beam
which removes time from the description
that the effect of damping and inertia term
can be easily incorporated in the analysis.
For the substructure identification the spec-
tral element methodology provides a power-
ful method in the representation of dynamic
problem.

2. Through matrix operation the interior nodal
displacement was expressed in terms of the
boundary nodal displacement of the sub-
structure. It is convenient to choose the
boundary nodes as well as part of the in-
terior nodal displacement can be measured
so that the identification formulation can be
established.

3. In this example the identified EI-values of
the bridge element are similar from differ-
ent seismic event. This provides a health
monitoring index of this bridge. The iden-
tified n-value (damping) increases for larger
vibration response.

4. Throughout the identification, the time his-
tory of the internal member forces can be re-
trieved. The maximum values of the mem-
ber forces during the earthquake are useful
to check with the designer from the view-
point of safety evaluation.
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