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A neural network model was integrated into the Cremer model for estimating traffic states on a freeway.
In the Cremer model, which is a macroscopic traffic flow model combined with the Kalman filter, the
observation equations that relate the state variables to the observation variables were described using a
neural model. The state equations that define traffic flow dynamics were also defined by another neural
model. By using the neural models, non-linear characteristics of traffic flows were represented. And the
derivative matrices in the filter were easily obtained. Moreover, a parameter that was dependent on traffic
states were implicitly realized. The method was applied to a road section in the Metropolitan Expressway.
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1. INTRODUCTION

Traffic flow simulation is extensively used by
planners and engineers to evaluate the effects of
alternatives for existing and future traffic operations.
The analysis involves the use of traffic flow models.
Of those models, the macroscopic flow model, which
was first proposed by Payne” and later modified by
Cremer?, is effective in describing traffic flow
phenomena more precisely because the model is based
on not only the conservation law of traffic flow but
also the equation of motion. Even now the model has
been modified and extended by many researchers,
such as Ross et at.”), Papageorgiou®, Michalopoulos
et at.” and Sanwal et at.”

Cremer® proposed a feed-back method using a
Kalman filtering technique for estimating traffic states
on a freeway: Traffic density and space mean speed
that were estimated by the Payne model were adjusted
so that the flow rate and time mean speed at
observation points would coincide with actually
observed ones. The method has a potential for future
traffic control systems because it can estimate traffic
states in real time without any driver’s behavior
model. To further improve the estimation precision,
Cremer et at.” treated the model parameters as the
state variables and then estimated them together with
the other state variables.
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We™”  also improved the Cremer model.
Considering the fact that the traffic states at a point
are strongly affected by the traffic states in the
upstream links when the traffic is in a free flow state,
whereas they are affected by the downstream states
when the traffic is heavily congested, we introduced a
parameter that was dependent on traffic states. We
called the model the Variant Weighting Factor (VWF)
model. Moreover, to apply the Cremer model to a road
section where traffic detectors were installed at any
point, we extended the VWF model so that it could
include any number of observation points in a road
section. The model called the Multiple Section (MS)
model made it possible to treat the road section
continuously without subdividing it into several
subsections.

However, the improvements on the Cremer model
produced other difficulties in the estimation
procedure: The introduction of a model parameter that
was responsive to traffic states made the model
equations very complicated and the differential
operations required in the Kalman filter inevitably
became very burdensome. The observation points that
are located at any point in a road section also brought
the same difficulty. In addition, there still remains
another shortcoming in the original Cremer (OC)
model: It employs only the traffic states in the nearest
upstream and downstream segments in both the state



and observation equations. This means that the
estimation precision depends on how long the
segments are. To reflect the traffic states in the
segments which are located in a certain length, we
need to reorganize the equations by incorporating the
traffic states in any number of the segments.

Neural network models have some promising
abilities: They can accurately describe non-linear
phenomena; they can organize their structures flexibly
according to the observed data. When they are applied
to a dynamic estimation problem, they can easily
establish a steady non-linear relationship between the
input and output signals. They require no preliminary
knowledge of both the state and the observation
equations.

To cope with the above problems, we tried some
new approaches to the Cremer model. That is, we
redefined the model based on a neural network model;
first, we described the observation equations using a
neural network model in order to establish a steady
non-linear relationship between the state and the
observation variables. In addition, we expressed the
state equations, too, using another neural network
model. The introduction of the neural network models
made it easy to derive the differential matrices in the
Kalman filter. This eventually opened a way to
employ any model parameters that were dependent on
traffic states. We referred this approach to the
neural-Kalman filtering method. Recently,
Vytholkas'” proposed a method that combined the
Kalman filter with a neural network model for
forecasting traffic states in urban networks. But he
used the Kalman filter to identify the synaptic weights
of the neural network, not to adjust the traffic states.
In other words, he replaced the back-propagation
method with a filtering technique. That is, the method
is one of the Kalman-neural network models'".

This paper aims to investigate the ability of the
neural-Kalman filtering method to estimate traffic
states on a freeway. We examined how accurately a
neural network model could describe the state and
observation equations and realize a mode! parameter
that was dependent on traffic states. First, we briefly
present the fundamental theoretical backgrounds of
the Cremer model, including the improvements we
made in the previous papers™®. Then, we explain how
we can deal with the above problems using a neural
network model. Next, we investigated how effective
the neural-Kalman filtering method was. We applied
the method to a road section on the Metropolitan
Expressway in Tokyo and compared the results with
those estimated by the Cremer model. Finally, we will
summarize our research thus far and give our outlook
on future work.
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Fig. 1 Traffic flow variables on a freeway section.

2. THEORETICAL BACKGROUNDS

(1) Macroscopic Traffic Flow Model

Since we already defined the macroscopic model in
previous papers™, we present only the notation of
traffic variables and the fundamental equations used
in this analysis:

a)Traffic variables (Fig.1)

cifk) : density of segment i at time &
vi(k) : space mean speed of segment / at time &
gifk) : flow rate at boundary point of adjacent

segments 7 and 7 +1
wi(k) : flow rate at boundary point

ri(k) : flow rate at entrance ramp / at time
si(k) - flow rate at exit ramp 7 at time &
b) State equations
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AL; : segment length

4t - simulation time interval
7 time constant

v : sensitivity factor

x : density constant,

vf: free speed

Cmax - the jam density
mand ! : sensitivity factors
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¢) Observation equations

-q’.(k) T I-acivi * (1 _a)ﬂi +1% +1 k)
w,-(k) = [avi + (1 -a)v’_ ol k)

where ¢ is the weighting factor ranging 0.0 to 1.0. A
detailed discusston of the Kalman filter can be found
by investigating the references™”.

C)
&)

(2) Kalman Filter'>'>

Choosing density and space mean speed as the state
variable vector xx and flow rate and time mean speed
as the observation variable vector yk, we can rewrite
Eqs.(1) and (2) as a state equation and Egs.(4) and (5)
as an observation equation:

Xt = /sy )+ B i ok - ©)
=)+ & )
where  xy = [e vty vy v ](Tk) ®)
[ ,qP,wP](Tk) ©)

where .
u}, - inflow volume from inflow links
B : the coefficient matrix
& and ¢ - noise vectors
7 - number of segments
p : number of observation points

Since Eqs. (6) and (7) are non-linear, we linearize
them around the nominal solution x; :

Npag = (D_k“'k +bk + Buk +E&p (10)
yp =¥px, +dk+§k (11)
where
* *
b, = fix;)-®,x
k k kYk
. . (12)
tlk =g(xk)—‘kak
9
op-L oy % (13)
ox ox

Calculating ®f and W step by step, we can correct
the state variables as follows:

.ek =¥+ Kk[yk - ;k] (14)
where
%, =f(ik _1)+ B, (15)

” . , -1
l\k = Mk‘*pk(‘PkMklyk + F)

Py =My ~KyWuM, (17

My =<I>kPkd)'k +Q

where the vectors ¥, and ¥, are referred to as the
one-step predictor of x¢and ®, as the filtered estimate
of xk. Ki is the Kalman gain matrix at time k. And "
and Q are covariance matrix of & and (.

(3) Variant-Weighting Factor Model®

The original Cremer (OC) model assumes a
constant weighting factor a in Eqs.(4) and (3).
However, when traffic is in a free-flow state, flow rate
and time mean speed at a given point are mainly
dominated by the traffic states in the upstream,
whereas when traffic is in a heavy state, they are
largely influenced by the states in the downstream
because some growing congestion generated in a
downstream segment propagates upwards. A constant
weighting factor cannot describe such phenomena. We
introduced a weighting factor that was dependent on

density:
a(cl_ (k))= e_'[}ci(l‘) (18)

where B is a curvature in the range of 0.0 to 1.0. We
called this model a Variant-Weighting Factor (VWF)
model. Since this function decreases monotonically
with density, it can represent the above-mentioned

“traffic flow phenomena very well. It should be noted

here that the introduction of such a factor would make
the structure of both the state and observation
equations complicated. Consequently, it would
become burdensome to differentiate the equations and
derive the matrices @, and ¥ in Eqs.(12) and (13).
This is the reason why we introduced a neural network
model in this paper.

(4) Multiple Section Model®®

As shown in Eq. (2), to estimate the space mean
speed v, (k) of the first segment, the space mean speed
v,(k) preceding the entrance is needed. Similarly, to
estimate the space mean speed vu(k) of the last
segment, the density c,+1(k) beyond the exit is also
needed. In the OC model, those variables are estimated
in an extrapolating manner. Since the OC model is
applicable to a single road section where traffic data
are observed only at both/either entrance and/or exit of
the section, we have to divide it into several
subsections at every observation point when we apply
the model to a long road section, in which several
observation points are located inside. This subdivision
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Fig.2 Multiple neural network model.

not only interrupts the propagation of traffic flow over
the whole section, but also increases the frequency of
extrapolations. Consequently, the estimation precision
would be inevitably decreased.

Treating such a road section as a single section, we
redefined the dynamic equations so as to correspond to
the observation condition. For example, for the flow
rate ¢i(k) in Eq.(1), we used the actually observed
ones. This inevitably required the redefinition of the
matrices of @, and ¥. We called this generalized
model the multiple section (MS) model.

3. NEURAL-KALMAN FILTER

(1) Neural Network Model '

We used a multilayer neural network model as
shown in Fig.2, which consists of three layers: an
input layer, a hidden layer, and an output layer.

x” represents an input signal and y,” an output signal.
The output signal y,” is calculated as follows:

vP =h EW;Dh(EW:Ch(XIB)) (19)
J !
where A(x) is the sigmoid function. For adjusting
synaptic weights, we need target signals that are given
by theoretical equations or observed data. We
repeated the back-propagation operations' until the
following average squared sum of the between output
signal y,” and target signal z, became sufficiently

small:
(20)

where Np is the number of neurons in the output layer.
It should be noted here that it is very easy to
produce the derivative of an output signal %P to an
input signal x,” because Eq. (19) is definitely defined
by analytical functions. It follows:
D
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Fig.3 Neural network modeling of state and observation
equations.

As will be stated later, this derivative function
constitutes the components of matrices @ and ¥ in
Egs.(12) and (13).

First, we developed a neural network model for the
state equation of Egs.(1) and (2). as shown in
Fig.3(1). Traffic variables on the right sides were used
as input signals, while variables on the left sides were
used as output signals. Although the average speed
V(ci(k)) in Eq.(3) was dependent on ¢;(k), we treated it
as an input signal because it contains some
independently-determined parameters. We produced
the target signal using Eqgs. (1) and (2). It should be
noted here that the neural models here were used only
for estimating the matrix @, in Eq.(12) because
Egs.(1) and (2) could accurately estimate the traffic
states.

Second, we developed another neural network for
the observation equations, as shown in Fig.3(2).
Although we emulated the basic structure of Eqs.(4)
and (5). the state variables not only in the nearest
segments but also in the more distant segments in both
the upstream and the downstream segments were
employed as input signals. Naturally, the target signal
came from the actually observed data. The neural
models here were used not only for estimating the
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observation variables but also for defining the matrix
¥ in Eq.(13).

We produced both the neural networks for each
segment. Preparing a lot of target signals for extensive
traffic conditions in advance, we adjusted the synaptic
weights so that the difference between the output and
the target signals were minimized. The completion of
the training of synaptic weights makes it possible
produce the components of matrices @.and ¥.

(2) Neural-Kalman Filter

In conventional Kalman filters, both the state and
the observation equations have to be analytical
functions. However, traffic phenomena are often too
complicated to describe analytically. The relationship
between the state and observation variables is such a
case: Although Cremer defined the relationship using
Egs. (4) and (5), traffic flow volume and average
speed actually observed at a point are affected not only
by the traffic states in the neighborhood, but also by
various road and traffic conditions, such as curvature,
grade, percentage of heavy vehicles and allowable
speed. Analytical equations are almost impossible to
reflect the effects of those conditions. Here, we
proposed an alternative filter, in which the equations
were described by neural network models. This made
it possible to construct the observation equations as
precisely as the observed data were. This eventually
realized a model parameter, such as the weighting
factor in Eq. (18), that was dependent on traffic states,
because the synaptic weights were already adjusted so
as to reflect the effects of the variant parameter. We
referred this new approach to the neural-Kalman
filtering method.

Fig.4 is the block diagram to estimate the traffic
states using the neural-Kalman filter. The painted
boxes depict what are different from the conventional
Kalman filter. However, the fundamental algorithm is
identical to it. First, based on the estimates fck_, at the
previous time -1, we predicted the state variable X,
at time k& using Egs.(1) and (2). In this process, the
flow rate and the time mean speed at the points where
traffic data were not observed were also estimated by
the neural network g but not Egs. (4) and (5). Prior to
obtaining the actual observed data y, we estimated ¥,
using the neural model g. At the same time, using the
neural derivatives of Eq.(21), we calculated the
matrices @, and ¥, which determined the Kalman
gain K. Then we corrected the predicted estimates X,

and obtained the new ones X, according to Eq.(14).

Since the neural network model adopted here is a sort
of nonlinear regression equation, it is important to
choose reasonable input signals that well represent the
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Fig.4 Block diagram of neural-Kalman filtering method.

output signals for establishing effective neural state
and observation equations.

4. OBSERVATION DATA

The observed data used here came from a road
section on the Yokohane Line of the Metropolitan
Expressway. It is 5130 meters long. We used the
traffic data from Oct. 28 to Nov. 1 in 1993. Traffic
detectors were installed on both the nearside and the
passing lanes every several hundred meters and traffic
data of flow, occupancy, and average speed were
compiled every | minute. Since the macroscopic
model here does not represent the behaviors of
individual vehicles on each lane. we aggregated the
traffic data on both lanes into the ones on an
equivalent single lane. This produced a traffic volume
of greater than 20 or 30 vehicles per minute, which
was more than enough to estimate traffic states every
minute. As shown in Fig.5, we divided the road section
into 11 segments whose lengths 4/; ranged from 400 to
600 meters.

Then we assumed that traffic data were observed
only at four points of OP1 (entrance), OP2, OP3, and
OP4 (exit), although the data were actually observed
at all the boundary points. For the original Cremer
model, which is applicable only to a road section, we
defined three subsections, SS1, SS2, SS3 in Fig.5,
which were divided at every observation point. Each
subsection contained 3 or 4 segments. Table 1 shows
the configuration of each subsection. On the other
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Table 1 Configuration of subsecticns.

Subsection  length (km) ents on-ramp off-ramp
1 1.92 4 1 1
2 1.23 3 - 1
3 1.98 4 1 1

N

88 : SubSection
OP : Observation Point
CP : Checking Point

Fig.5 Overview of road section for numerical experiments.

Type OP1 OP2 & OP3 OP4

S I=+T I
1 i i+1 n
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Fig.6 Types of neural network models of observation equations.

hand, for the neural-Kalman method, we used the
multiple section (MS) model while treating the whole
road section as a single section. That is, there were 11
segments with four observation points. To examine
the effectiveness of each model, we set three checking
points of CP1, CP2, and CP3.

Prior to the numerical analyses, the simulation time
interval At must be carefully examined. It should be
noted here that the Payne-type macroscopic model is
designed to describe the dynamic behavior every few
seconds to a maximum 20 or 30 seconds by defining
the equation motion of Eq.(2). The model can
accurately represent the transition phenomena such as
the propagation of a congestion wave. Cremer”
discussed the relationship between the time interval A¢
and the segment length A/. Although they primarily
depend on what the model is used for, Cremer
indicated that the ratio of A4/ to Af should be in a
certain range. He recommended 10 seconds of Af and
500m of 4! as the standard for freeways. According to
his recommendation, we divided the road section into
segments of 400 to 600 meters and simulated the
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traffic flows every 10 seconds. Since the traffic data
are measured every one minute, we assumed that the
traffic flows are stationary during the time.

5. NUMERICAL EXPERIMENTS

(1) Model Parameters

The macroscopic model includes several model
parameters, such as is vy, Cnay, m, I, & 7, U, and &k We
estimated them based on a traffic simulation model as
Cremer” did. Picking out a time period of two hours
each day, ‘we estimated all the model parameters at
each subsection for each time period. That is, we
optimized the parameters so as to minimize the
following objective function J; at each checking point:

| (22)

H AR
where g;(k) and § ;(k) are observed and estimated flow
rates at checking point j at time k. wy(k) and W k) are
the time mean speed. oy and &;; are their standard
deviation. / is the total number of time steps.

JJ.=

(2) Initial Training
a) Observation Equations

First, we trained the neural network (NN) model for
the observation equations. That is, we built a
relationship between the state and observation
variables at each observation point in Fig.5.
Considering the fact that the observation variables at a
given point were related to the state variables in-both
the upstream and downstream segments, we assumed
two types of neural structures, as shown in Fig.6. That
is, we assumed the effects of traffic states not only in
the nearest segment but also in the farther segments.
For example, the type 2 model at observation point 2
inputs the density and the space mean speed of two
upstream and two downstream segments and then
outputs the flow rate and the time mean speed.

Table 2 shows the number of neurons in each layer
for each type of model. The number of neurons in the
intermediate layer was determined experimentally. It
should be noted that what is important here is not the
number itself, but the balance between the total
number of synaptic weights and the number of training
data sets. In other words, by preparing a sufficient, but
not too great a number of training data sets in
comparison with the total number of synaptic weights,
we can normally realize a stable relationship between
the input and output signals. As stated below, we
prepared several times the number of training data sets
than the number of synaptic weights.



Table 2 Number of neurons for observation equations.

Type number of neurons OP1 OP2 OP3 OP4

input layer 2 4 4 2

1 intermediate layer 2 3 3 2
output layer 2 2 2 2
input layer 4 8 8 4

2 intermediate layer 3 5 5 3
output layer 2 2 2 2
240 (13:30-14:30,0ct. 28,30, Nov. 1)

number of training data

number of checking data 60 (13:30-14:30, Oct. 29)

Picking out a time period of one hour a day from
Oct. 28 to Nov. 1, we produced 240 sets of training
data and 60 sets of checking data because the observed
data were compiled every one minute. Although it may
seem to be a bit curious to select the traffic data prior
to the training as the checking data, we employed the
data on Oct. 29 as the checking data because the time
period contained extensive traffic data.

The training procedure was simple. First, we
assumed the initial synaptic weights. Then we gave the
input signals into the input layer and calculated the
output signals, which corresponded to the observation
variables. Then, using the back-propagation method,
we adjusted the synaptic weights so as to minimize the
difference between the actually observed and
estimated variables. In the actual computation, the
input and output signals were normalized by
appropriate numbers. We iterated this procedure until
the Root Mean Squared (RMS) error became
sufficiently small for all of the training patterns.

The capability of a NN model can be evaluated by
the estimation precision for checking data that are not
used for “the training. After the completion of the
training, we gave the input signals of the checking data
and calculated the output signals using Eq.(19). Then
we compared them with those that were actually
observed. Fig.7 depicts the average RMS errors of
output signals for 60 checking patterns at four
observation points for each type of NN model in Fig.6.
We can see that the NN model of type 2 gives smaller
RMS errors for all the observation points. This means
that by incorporating the traffic states of the two
adjacent segments in both the upstream and the
downstream into the model, we could estimate the
observation variables more precisely. As shown in
Fig.7, the errors of the type 2 model were nearly 5%.
Judging from our experiences, RMS errors less than
5% for checking patterns could produce satisfactory
results in the later filtering process.

Also, we trained other types of the NN model, which
input the traffic states in more segments in both
upstream and downstream. However, the RMS errors
were not less than those for the type 2 model. This is

13:30-14:30, Oct. 29. 1993
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Fig.7 Average RMS errors of neural observation systems for
checking data (13:30-14:30, Oct. 29,1993).

probably because the number of training patterns were
insufficient compared with that of the input signals.

To evaluate the estimation precision further, we
investigated how precise the NN model could estimate
flow rate and time mean speed at checking points
whose data were not used for the training and
compared them with those by the original Cremer
(OC) model. Fig.8 shows the average RMS errors of
(1) flow rate and (2) time mean speed at three checking
points in Fig.5. We can see that the errors of the NN
model were somewhat smaller than those by the OC
model except for the flow rate at CP1 and the time
mean speed at CP2. In total, the NN model gave better
results for 4 of 6 data sets. However, it is a bit too
early to judge the effectiveness of the neural network
model at this stage because the estimates are not
corrected yet by the Kalman filter.
b) State Equations

Next, we trained the neural network (NN) model for
the state equations of Egs.(1) and (2) to produce the
dynamic derivative of the matrix @, That is, we built
a relationship between the state variables at time k and
those at time k+1 for each segment. As mentioned
before, the neural model was designed to emulate the
state equations themselves: We input vi(k), ci(k).
vitk), cini(k), qia(k), gitk), ri(k). si(k), and V(ci(k)) and
output ¢;jk+1) and vi(k+1). According to whether
segments have an on-ramp or an off-ramp. we
classified the segments into three types, as shown in
Fig.9. That is, the number of neurons in an input layer
is 7 for segments that have no on- and off-ramps, and
8 for segments that have either an on- or off-ramp. We
allocated five neurons to the intermediate layer. As
well as in the neural networks for the observation
equations, the number of neurons in the intermediate
layer did not affect the estimation precision because
we provided a sufficient number of training patterns.

Picking out a time period of two hours a day, 13:00
to 15:00, from Oct. 28 to Nov. 1, we produced 480
sets of training data and 120 sets of checking data: For
each time period, we simulated the traffic flow using
Egs.(1) and (2) by inputting the actually observed
flow rates. Although we obtained 3600 sets of data in
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13:30-14:30, Oct. 29,1993
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(1) Flow rate.
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(2) Time mean speed.

Fig.8 Average RMS errors of neural observation systems. at
checking points, compared with those of original Cremer
model(13:30-14:30, Oct. 29,1993).

Type configuration
1
without l - == - I
On- & Oft- Ramps J i+1
2 AN
with On-Ramp I |
i i+1
3 i - i |
with Off-Ramp N\ i
i i

Fig.9 Type of neural network models of state equations.

total because we simulated every 10 seconds for 10 hours,
we thinned out the results every 1 minute.
Consequently we got 600 sets of data, 480 as the
training data and 120 as the checking data. For the
same reason as in the previous section, we used the
data on Oct. 29 as the checking data. This training
procedure is the same as in the observation equation.

After the training was completed, we examined how
precisely the NN models could estimate the state
variables. Giving the input signals of the checking
data, we calculated density and space mean speed at
each segment using Eq.(19) and compared them with
those that were estimated by Eqgs.(1) and (2). Fig.10
depicts the average RMS errors of output signals
for120 sets of checking data at all the segments. We
can see that the errors are small enough for some
segments because the errors do not exceed 5%. But the
errors may be somewhat large in the other segments. It

13:30-14:30, Oct. 29, 1993

Segment
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5 10 15
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Fig.10 Average RMS errors of neural state equations for
checking data (13:30-14:30, Oct. 29, 1993).

should be noted that the estimates are not corrected yet
by the actually observed data. Moreover, as will be
shown later, since we used the neural state equations
only for producing the matrix @, but not for
estimating the state variables, the errors did not
strongly affect the estimation precision.

(3) Estimates of Traffic States

To examine how effective the neural-Kalman
filtering (NKF) model was for estimating traffic
states, we applied it to a road section shown in Fig.5
and compared the flow rate and the time mean speed at
the checking points and compared them with those
estimated by the original Cremer (OC) model. As the
checking data, we took the time period from 13:30 to
14:30 on Oct. 29, which included traffic data in both
light and heavy traffic states.
Prior to the estimation by the NKF model, we have to
clarify how the observation errors induced into the
traffic detector data affect the estimation precision.
Using the detector data observed on some urban roads,
Nakatsuji'® investigated how large the noises in traffic
volume were and how the Kalman gain decreased as
the noises increased. The error of traffic volume on the
arterial roads was small enough (less than 5% in most
cases) and the Kalman gain was little affected.
Unfortunately, since we do not have any true observed
data at this road section, we could not directly evaluate
the effect of the noises. However, considering the fact
that the noises were less on arterial roads than on
streets in commercial districts, we assumed that the
traffic data observed on the Metropolitan Expressway
are not more contaminated by noises than the data on
the arterial roads. That is, we assumed the error to be
5% for both traffic volume and time mean speed. In
addition, what is important here is to recognize that the
decrease of the Kalman gain does not mean the direct
deterioration of the estimation precision. As shown in
Eq.(14), it means that the observed data contribute
less in the correction process. Anyway, we have to
carefully examine what we estimated because the
effect of noises have not been accurately accessed yet.

According to the procedure in Fig.4, we first
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Fig.11 Estimation of flow rate and time mean speed estimated by
neural-Kalman filtering model, compared with those by
original Cremer model and observed ones.

(CP3, 13:30-14:30, Oct. 29,1993)

estimated the density and space mean speed of all the
segments and then corrected them using the neural-
Kalman filter. Since the real state variables were
unknown, we evaluated the method by comparing the
estimated flow rate and the time mean speed at three
checking points with those of actually observed ones.
Fig.11(1) shows the estimates of the flow rate at
checking point 3. The x-axis represents time and the
y-axis represents the flow rate. The estimates were
compiled every 1 minute to compare with the observed
ones. We can see that the OC model overestimated the
flow rate during the time period. On the other hand, the
NKF model got very much closer to the observed ones
than the OC model. Similarly, Fig.11(2) shows the
estimates of time mean speed. The OC model was not
successful in describing the variation at the early stage
and detecting the speed drop at around 40 minutes. On
the other hand, the NKF model agrees well with the
observed data, but the model is not successful in
describing the variation at the end of the time period.
We further investigated the effectiveness of the NKF
model. Fig.12 shows the comparison of the average
RMS errors of (1) flow rate and (2) time mean speed
at three checking points at the same time period for the
OC and NKF models. First, we can see that both the
OC and the NKF models greatly improved the
estimates by the filtering operations, compared with -
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the ones in Fig.8, which were not corrected yet. This
means that the filtering operations were very effective
in estimating the traffic states on the road section.
Also, the NKF model produced much better estimates
for all the data sets than the OC model. And the RMS
errors are sufficiently small. As mentioned above, we
used the multiple section (MS) model in the NFK
model. Therefore, the improvements in Fig.12 may be
brought by the MS model rather than the NKF model.
For reference, we showed the difference of RMS
errors between the MS and NKF models, MS-NKF
which are depicted by the black bars in Fig.12. In the
MS model both the state and observation equations
were analytically described as well as in the OC
model. We can see that the NKF model gives better
results for 1 of 3 data sets of flow rate and for 3 of 3
sets of time mean speed. Although the errors for the
flow rate were not as good as expected, the values are
small enough. The results for time mean speed are
satisfactory.

In this way, the neural-Kalman filtering model was
effective in estimating the traffic states on the freeway
road section used in this analysis. However, we still
have a lot of problems to be solved. The model is a bit
time-consuming because the neural operations of
Eq.(19) are carried out every time traffic variables are
estimated. Application to a large road network that
contains many observation points is another problem.



5. CONCLUSIONS

To estimate traffic states on a freeway more
precisely, we integrated a multilayer neural network
model into a Kalman filtering method. Intending to
extend the Cremer model, we investigated how a
multilayer neural network medel could describe both
state and observation equations. We applied the new
method to a road section on the Metropolitan
Expressway in Tokyo and compared the results with
those produced by the original Cremer model. The
major findings are summarized as follows:

(1) By integrating the neural network models into a
Kalman filtering technique, we proposed a new
procedure to estimate the traffic states on a
freeway road section.

(i) These neural models for both state and
observation equations made it possible to easily
produce the dynamic derivative matrices that were
needed for the Kalman filter.

(ii1) The neural observation model, which 1inputs
density and space mean speed of two adjacent
segments, was somewhat better in estimating flow
rate and time mean speed than the analytical
equations used in the original Cremer model.

(iv) The method produced much better estimates than
the original Cremer model. Moreover, the neural-
Kalman filtering method estimated them
somewhat better than the multiple section model
which we proposed earlier.

Traffic detector data actually observed at a point are
influenced not only by the traffic states in the
neighborhood, but also by various road and traffic
conditions around the point. Employment of such
conditions as the input signal of the neural network
equations would serve not only to improve the
estimation precision but also to promptly detect the
occurrence of incidents. In addition, since neural
network models have a promising ability of accurately
learning what they have experienced, we could realize
an adaptive traffic control system, which is not based
on any driver behavior models, by thoroughly training
the relationship between any countermeasures for
traffic congestion and the resulting traffic states.
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