打込み杭の支持力の簡易管理方法

澤井 廣之1・塩井 幸武2・吉田 好孝3・上原 精治4・塚原 淑5

1 正会員 株式会社宮地鉄工所 社長 (〒103 東京都中央区日本橋小伝馬町15番18号)
2 正会員 八戸工業大学構造工学科土木工学科二等科 (〒083 八戸市大字市沢字小羽 881)
3 正会員 東京都道路建築業協会技術部技術Second課長 (〒160 東京都中央区一番町 15番5号)
4 正会員 住友建設株式会社技術研究所 (〒320-01 埼玉県越谷市江川町 1726)
5 正会員 有限会社アプライド 代表取締役 (〒300-32 つくば市大曽根 3816-1)

比較的簡単な方法によって測定した打込み杭の杭頭変位あるいは速度波形をもとに波動理論によって杭の鉛直支持力を推定する方法を示す。波動理論による杭の支持力管理方法では、杭頭での力と速度の時間波形を必要とする。しかし、支持力の解析に時間がかかるから単純には適用し難い、という問題点があった。本論では、杭の貫入量が先端端で粒子速度の時間積分となることを利用し、杭頭変位あるいは、杭頭での速度波形を手掛かりとして杭の鉛直支持力を推定する方法を(1) Hajdu で速度波形が得られている場合、(2) 杭の変位量と貫入量のみが測定されている場合、について示す。実際に測定されたデータをもとに本論で示す方法を適用した結果、実用的な程度で杭の動的貫入抵抗を推定できることが分かった。

Key Words : construction control, dynamic, bearing capacity of piles, stress-wave theory

1. はじめに

打込み杭の支持力管理方法に、先進で動的支力式 (Pile driving formula) によるものと、波動理論に基づいた測定、解析技術の2つの方向がある。前者は、杭頭で測定された杭の貫入量やリバウンド量をあらかじめ導出した算定式に代入して杭の支持力を算出する方法である。杭の貫入量やリバウンド量の測定では特別な道具や技術を必要としない。これにより、動的支力式は、比較的簡便に用いることができるという長所があるものの、算出された支持力値の妥当性については多くの疑問が投げかけられてきた1)(2)。後者は、杭打ち実象が波動理論によって説明できることを前提に、杭にひずみ計および加速度計などのセンサーを取付けて測定した杭の動的挙動を波動理論によって解析し、杭中の応力波の伝搬に関与する境界条件としての地盤の抵抗力を算出するものである3)(4)。この測定方法としては、杭頭部のみにセンサーを取付けて杭の支持力を推定する、いわゆる杭頭計測方法が一般的に用いられるが、測定及び解析に時間がかかることなどから国内では、広く普及した技術としてはいない。

これらの方針の方向性に位置付けられるものとして、宇都・冬木5)、境・村上6)は、動的支力式を波動理論に基づいて導出するという方法を用いている。宇都らは、杭打ち前の時のリバウンド量と杭の貫入抵抗の関係を一次元波動方程式の解析解を用いて解き、両者が比例関係となることを示している。この方法は、道路橋示方書IV(下部構造編)7)および建築基礎構造設計指針8)に取入れられている。境らは、杭の貫入量が先端との速度の時間積分となることに着目し、いくつかの動的支力式を提案している。

しかし、波動理論による考察から打撃エネルギーが同じでも、杭頭で発生した打撃力の時間波形によって杭の貫入量に差が生じることが知られており9)，打撃波形を考慮することによって、より精度の高い支持力管理方法を提案できるものと思われる。本論では、杭頭の変位もしくは加速度の時間波形を測定して速度波形を得、杭の貫入量をもとに杭に作用する動的貫入抵抗を算出す方法について示す。また、測定データが杭頭での最大変位と杭の貫入量のみの場合に、杭頭での打撃力波形を推定し、これから動的貫入抵抗を算出する方法についても述べる。

2. 杭の貫入量の理論的解析

杭先端での地盤の抵抗が図-1に示すような剛塑性でモデル化される時、杭の貫入量 S は、

\[S = \int_{t_1}^{t_2} V(t) \, dt \] \hspace{1cm} (1)

で示される。式 (1) において V(t) は杭先端 (給水 t で表記) での粒子速度、積分区间 [t_1, t_2] は、被積分関数 V(t) が正となる時間範囲、また t は時間である。V(t) は、進行波 (1で表記) の持つ粒子速度 V_1(t) と後退波 (1で表記) の持つ粒子速度 V_1(t) の和であり、

\[V(t) = V_1(t) + V_1(t) \] \hspace{1cm} (2)

241
変位

図-1 地盤の反力モデル

と表現される。ここで、進行波を1で示したのは、杭打ち現象の解析では、杭頭を座標系の原点にとり、杭先端方向（すなわち下向き方向）を正の方向とするからである。後退波は、杭の周面抵抗あるいは杭先端抵抗との力の釣り合いによって生じる反力であり、進行波、および後退波の力成分を \(F_{\text{H}}(t) \), \(F_{\text{T}}(t) \) とすると杭先端での力の釣り合いから、

\[
F_{\text{H}}(t) + F_{\text{T}}(t) = R(t) \tag{3}
\]

が成立する。なお、\(R(t) \) は、杭先端に作用する地盤の反力である。杭打ちの解析では、力成分は圧縮方向を正にとるが、進行波、後退波について力成分と粒子速度成分には、

\[
\begin{align*}
F_{\text{H}} &= ZV_{\text{H}} \\
F_{\text{T}} &= -ZV_{\text{T}}
\end{align*} \tag{4}
\]

の関係がある。ここで、\(Z \) は杭の機械インピーダンスであり、\(A, \beta, c \) をそれぞれ、杭の断面積、杭材の繊維係数および繊維波の伝搬速度とする。

\[
Z = \frac{AE}{c} \tag{5}
\]

で表される。式 (4) の関係を式 (3) に代入すると、

\[
V_{\text{H}}(t) = V_{\text{T}}(t) - \frac{1}{Z} R(t) \tag{6}
\]

となる。これを式 (2) に代入して、整理すると、

\[
V_{\text{H}}(t) = 2V_{\text{T}}(t) - \frac{1}{Z} R(t) \tag{7}
\]

が得られる。

また、杭先端での進行波の粒子速度は、杭の周面に作用する摩擦力を \(F_{\text{F}} \) とすると、

\[
V_{\text{H}}(t) = \frac{1}{Z} \left(F_{\text{H}} \left(t - \frac{T}{2} \right) - \frac{1}{2} F_{\text{F}} \right) \tag{8}
\]

となる。ここで、\(F_{\text{H}} \) は、杭頭（添字 \(h \) で表記）に発生した打撃力の波形、\(T \) は、波動が杭を1往復する時間である。式 (8) は、杭頭に発生した打撃力が杭先端に到達するまでに、杭の周面抵抗の1/2に相当する力が減衰することを意味しており、打撃力は杭の周面抵抗の1/2より大きいことが前提条件となっている。式 (8) は式 (7) に代入すると、

\[
V_{\text{H}}(t) = \frac{1}{Z} \left(2F_{\text{H}} \left(t - \frac{T}{2} \right) - (F_{\text{F}} + R) \right) \tag{9}
\]

が得られる。式 (9) を式 (1) に代入して、時間を\(-T/2\)ずらすと、

\[
S = \frac{1}{2} \int_{t_1}^{t_2} \left\{ 2F_{\text{H}}(t) - (F_{\text{F}} + R) \right\} dt \tag{10}
\]

が得られる。ここで \((F_{\text{F}} + R) \) は杭の周面抵抗と先端抵抗を加えた全抵抗であるから、杭の貫入量 \(S \) と杭頭に発生した打撃力の波形 \(F_{\text{H}}(t) \) が得られれば、杭に作用した慣性貫入抵抗が逆算できることになる。杭頭での打撃力波形が積分可能な関数として与えられないと、杭の貫入抵抗 \((F_{\text{F}} + R) \) の初期値を適当に選んで式 (10) が収束するような動的貫入抵抗の値を求めるという手順で解を求めることができる。

3. 杭頭の打撃力の推定

杭頭にひずみゲージと加速度計を取付け、いわゆる波動理論による支持力管理技術では、杭頭で測定した力 \(F_{\text{H}}(t) \) と速度 \(V_{\text{H}}(t) \) から直接に、

\[
F_{\text{H}}(t) = \frac{1}{2} \left\{ F_{\text{H}}(t) + ZV_{\text{H}}(t) \right\} \tag{11}
\]

として杭頭に発生した打撃力を求めることができる。\(\endnote{10} \)

しかし、本論では、杭の支持力の簡単管理方法について提案する主旨から、杭頭で計測された測定量は貫入量の他の、杭頭での速度波形、杭頭の最大変位量、の値について杭頭の打撃力波形を推定し、これから式 (10) を逆解析して杭の動的貫入抵抗を求める方法について論じる。

\(\endnote{10} \) は、杭頭に加速度計を取付けで測定した波形を積分して速度波形を得ることによって簡単に実現できる。また、杭頭で変位波形を測定し、これを微分して得ることもできる。\(\endnote{11} \) は、ペン書き法\(\endnote{12} \)によって、杭の貫入量、リバウンド量を測定する時に得られる量である。特にペン書き法では、測定方法そのものは従来からの方法であり、手書きであることは言うまでもない。

いずれの方法を用いる場合であっても、式 (11) にも示されるところ、力と速度の2変量の測定を行わない限り、杭頭での打撃力波形 \(F_{\text{H}}(t) \) は推定せざるをえないものである。

(1) 杭頭打撃力波形

杭打ちは、ハンマーで直接杭頭を打診することは少なく、一般的にはクッション、パイルキャップを介しての打診となる。この時、図-2に示すように、クッション系を単純にパターンに置換するとハンマー及び杭の運動は、

\[
\begin{align*}
M \ddot{x} + K(x - y) &= 0 \\
Z \ddot{y} + K(y - x) &= 0
\end{align*} \tag{12}
\]

\(\endnote{11} \) 杭側に線形記録紙を貼付し、杭の打診中の貫入量の記録をとる方法であるが、ていねいに記録することによって、杭の最大変位量を測定、記録することもできる。

242
図-2 ハンマ、クッションおよび杭系のモデル

の連立微分方程式によって示される。ここで、\(M, x, K, Z, y \) は、それぞれハンマの質量、変位、クッションのパネ係数、杭の機械インピーダンスおよび杭頭の変位である。式 (12) において、

\[
\begin{align*}
x &= A \exp(\lambda t) \\
y &= B \exp(\lambda t)
\end{align*}
\]

とおき、これを式 (12) に代入した後、両辺に共通な \(\exp(\lambda t) \) を除くと、

\[
\begin{bmatrix}
M\lambda^2 + K & -K \\
-k & \frac{K}{\lambda} + K
\end{bmatrix}
\begin{bmatrix}
A \\
B
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

が得られる。ここで、係数 \(A, B \) が 0 とならないためのには、

\[
\begin{align*}
M\lambda^2 + K & = 0 \\
k & = \frac{K}{\lambda} + K
\end{align*}
\]

が成立しなければならない。これを \(\lambda \) について解くと、意味のある解として、

\[
\lambda = -\frac{K}{2Z} \pm \sqrt{(\frac{K}{2Z})^2 - \frac{K}{M}}
\]

が得られる。この解では変数根の中が正となる場合（クッションが硬い場合）と、負となる場合（クッションが柔らかい場合）及び 0 となる場合がある。変数根が 0 となる条件は、

\[
K = \frac{4Z^2}{M}
\]

の時であり、この時のクッションのパネ係数を \(K_0 \) とおき、実際のクッションのパネ係数を、

\[
K = S_e K_0
\]

として示す。ここで、\(S_e \) は、クッションのパネ比を意味し、次元のない値である。クッションが硬いと打撃に伴って大きな衝撃力が作用し騒音も大きくなることから、実際的な杭打機のパネ比は、1 以下となっていることが多い。ストームハンマやディーゼルハンマなどのように従来から用いられているハンマではパネ比が 1 程度であって、比較的固いクッションが用いられている。これに対し、騒音対策を考慮して設計された油圧ハンマでは、ハンマの質量が大きくまたクッションが柔らかしたことから、比較的小さなパネ比となっている。このため、ここでは \(S_e \leq 1 \) の条件について解を得る。

式 (16) は、\(S_e < 1 \) であれば、

\[
\lambda = -\frac{2ZS_e}{M} \pm i\frac{2ZS_e}{M} \sqrt{1 - \frac{S_e}{S_r}}
\]

と変形でき、杭頭の打撃力の速度波形を \(V(t) \) とし、初期条件 \(V(t) = V_0 |t=0 \) を用いて特解を求めるとき、

\[
V(t) = 2V_0 \sqrt{\frac{S_r}{1 - S_e}} \exp\left(-\frac{2ZS_e}{M} t\right) \cdot \sin\left(\frac{2ZS_e}{M} \sqrt{1 - \frac{S_e}{S_r}} t\right)
\]

が得られる。パネ比 \(S_e = 1 \) の場合、

\[
\lim_{S_e \to 1} \frac{2ZS_e}{M} \sqrt{1 - \frac{S_e}{S_r}} t \to \frac{2Z}{M}
\]

となることを用いて、

\[
V(t) = 2V_0 \sqrt{\frac{2Z}{M}} \exp\left(-\frac{2Z}{M} t\right)
\]

が得られる。図-3に式 (20), (22) によって計算された打撃力の波形を示す。なお、打撃力は、式 (4) の関係を用いて速度波形から力波形へ変換したものである。なお、計算条件は、ハンマの質量 24,000kg、落高 1.2m、杭の断面積 1,442cm²、縦弾性係数 206.0 × 10⁹kN/m²である。

図-3 杭頭打撃力の波形

杭頭での速度波形と力波形の両方が得られている場合、打撃力波形 \(F_h(t) \) は、推定によって与えられがたい。更に、杭頭の測定値が速度や力などの時間波形ではなく、杭の最大変位量と貫入量のみである場合、杭頭打撃力波形を推定して式 (10) を適用し、杭の動的貫入抵抗を求めめるという手順となる。式 (20) において、ハンマの質量および杭の機械インピーダンスは既知量である。よってハンマが杭と衝突する時の打撃速度 \(V_0 \) とクッションのパネ比 \(S_e \) が得られると、杭頭での打撃
力波形が得られる。測定値が杭頭の最大変位と貫入量のみの場合、打撃力波形に関する情報は全く得られないので、パネ比を $S_r = 1$ と仮定する。ただし、先頭的にパネ比が与えられた場合（例えば、各打ち込み機のクッションのパネ比係数の値がデータベースなどによって与えられる場合）は、その値を用いるとする。パネ比が与えられれば、パネ比が 1 未満の時は式 (20)、1 の時には式 (22) を用いるという違いはあるが、いずれの場合でも打撃力波形を決定するに必要なパラメータは、V_0のみとなる。すなわち、杭頭の最大変位量と V_0 の関係が得られれば、これを用いて V_0 が決定され、杭の貫入量を用いることによって動的貫入抵抗が得られることになる。さて、パネ比が 1 でかつ杭の周間に地盤抵抗が作用していない場合の杭頭の最大変位量は、

$$D_{max} = \int_0^\infty 2V_0 \frac{Z}{M} t \exp \left(-\frac{Z}{M} t \right) dt = \frac{MV_0}{Z} \tag{23}$$

よって、

$$V_0 = D_{max} \frac{Z}{M} \tag{24}$$

として杭頭でのハンマーの打撃速度が与えられる。これを式 (22) に代入すると、

$$V(t) = D_{max} \left(\frac{Z}{M} \right)^2 t \exp \left(-\frac{Z}{M} t \right) \tag{25}$$

が得られる。実際、打撃力の波長と比較して杭が極端に短い場合や杭の周面抵抗が強い場合のように打撃力に起因する杭頭の変位が最大値に達する前に杭先端や杭周面からの強い反射波がある場合を除いて、杭頭の最大変位に対する地盤抵抗の影響が小さい、式 (25) を式 (10) に代入して解くと杭の動的貫入抵抗が求められる。また、パネ比が既存の場面ではこれを用い、次の手順で打撃速度を求める。すなわち、$V_0 = 1$ として、打撃力波形を算出し、この時の打撃力波形に応じた杭頭での最大変位を D_e、測定された杭頭の最大変位を D_{max} とすると、打撃速度は、

$$V_0 = D_{max} \frac{Z}{D_e} \tag{26}$$

である。

(3) 杭頭の速度波形による打撃力の推定

杭頭での速度波形が測定されている場合、①速度波形をそのまま打撃力波形として用いる方法と、②速度波形からパネ比を推定し、打撃力波形を生成する方法がある。杭の周面抵抗が比較的小さな場合、杭頭の速度波形と打撃力波形に違いがない場合には前の方法を用いても誤差は小さい。しかし速度波形をそのまま用いる方法では、周面抵抗が大きく、かつパネ比が小さい場合、測定された速度波形（式 (4) の関係を用い、杭の機械インピーダンスを乗じて力換算して打撃力と次元を同じくする。）は、実際の打撃力波形よりも小さく、したがって、式 (10) を用いて杭の動的貫入抵抗を求める場合、これより過小評価することになる。

後者の方法は、杭の周面抵抗の影響の小さい波形の立ち上がりのピーク付近の波形を用いてクッションのパネ比を推定し、これによって打撃力波形を生成する方法である。

a) 近似式によるパネ比の推定

打撃力の波形が図-4に示すように理論的な立ち上がり特異を持つ場合、打撃力波形の立ち上がりから最大値に到る時間を用がかりとしてパネ比を推定することがができる。打撃力波形が最大値となる時間 T_P は、式 (20) の時間に関する導関数が 0 となる時刻であるから、

$$T_P = \frac{1}{2Z S_r \sqrt{1 - S_r}} \tan^{-1} \sqrt{\frac{1 - S_r}{S_r}} \tag{27}$$

となる。しかし、式 (27) の形式では、T_P が測定されたとしても、これを S_r について代数的に解くことができない。そこで、式 (27) を近似展開し、これを代数関数で表現し、図-4に示すように打撃力波形の立ち上がりの最大値近傍が正弦波で近似できるを利用してパネ比 S_r を求める。式 (27) を、$S_r \rightarrow 1$ として近似展開し、これをまとめて、

$$T_P = \frac{\pi}{2Z S_r \sqrt{1 + S_r^2}} \tag{28}$$

が得られる。式 (27) と式 (28) の比較を図-5に示す。パ
ネ比 S_r が 1 に近い範囲では、両者の式はよく一致し、また、S_r が小さい場合でも波動の周期からのパルビの推定値の誤差は小さいことが示される。式 (28) から、打撃力を正弦波形とみなした場合の基本周波数 f は、

$$ f = \frac{Z}{\pi M} \sqrt{S_r + S_r^2} $$

(29)

であり、これから、

$$ S_r = \frac{1}{2} \left\{ \sqrt{1 + 4 \left(\frac{\pi f M}{Z} \right)^2} - 1 \right\} $$

(30)

としてパルビが得られる。

しかし、実際の波形は、図-6 に示すように、波形の立ち上がり過程は比較的平らで、波形の立ち上がり時刻を決定することが難しい。そこで、図-6 に示すように、打撃力が最大値の 1/2 から最大値に達するまでの時間を用いてパルビを推定する。周波数 f は、打撃力の波形が最大値の 1/2 から最大値に達する時間を T_d とすると、

$$ f = \frac{1}{6T_d} $$

(31)

である。これは、正弦波形の場合、T_d で周波数の位相が $\pi / 3$ となることから明らかである。以上、理論的・実験的に示されるように、パルビ S_r は、(1) に示す方法によって T_d を求め、(2) でこれを式 (31) に代入して f を得、(3) にこれ f を式 (30) に代入することによって求められる。

b) 波形マッキング法によるパルビの推定

波形マッキング法は、測定波形と計算波形がよく一致するように変数の値を求める方法であり、方程式の変数を一意に決めることが困難な場合などに用いられる方法である。計算過程では、まず適当なパルビを初期値として計算波形を生成し、実測波形とのマッキングの度合いが最大となる時のパルビを求める。すなわち、パルビが測定された T_d (波形が最大値の 1/2 から最大値に達する時間) と計算によって得られた波形の T_d が等しくなる時に計算に用いた S_r を実際のパルビとする方法である。式 (20) に定義する波形には、S_r が大きくなると T_d

が小さくなるという一意の関係があり、計算は比較的速く収束する。

c) 速度 V_0 の推定

ポップを決定するもう 1 つのパラメータは、打撃速度 V_0 である。パルビが 1 の場合には、測定された打撃速度の最大値を V_{max} とすると、式 (22) から、

$$ V_{\text{max}} = e V_0 $$

(32)

となる。すなわち、

$$ V_0 \approx 1.36 V_{\text{max}} $$

(33)

として打撃速度が求められる。

パルビが未満の場合は、パルビ S_r が決定される。式 (27) によって打撃力が最大値となる時間 T_d が得られるから、これを式 (20) に代入することによって V_0 を計算する。すなわち、式 (20) において、$V \rightarrow V_{\text{max}}, t \rightarrow T_d$ とすると、未知数は、V_0 のみである。

実用的には、計算波形の最大値と測定波形の最大値が等しくなる時の V_0 を求める簡単な方法がある。すなわち、$V_0 = 1$ とおいて計算した時の波形の最大値を V_c, 測定波形の最大値を V_{max} とすると、

$$ V_0 = \frac{V_{\text{max}}}{V_c} $$

(34)

として V_0 を求める方法である。

4. 実際の波形を用いた入力抵抗の推定

(1) 波形データ

波形データとして、東京湾横断道路での動的載荷試験 (11), (12) で測定された速度波形を用いる。表-1 に示す打撃記録を示す。波形名称「R3B」は、東京湾横断道路によって実施された杭の動的、静的載荷試験 (11) での反力杭
R3 の打止め時に測定された波形，また「1640」は，同（その 3)12)での試験柵に対する 1,640 回目の打撃時（杭の打止め 33 分後）に測定された波形である。

(2) 賦入抵抗の推定方法

杭の動的賦入抵抗の推定は，次の手順で行う。すなわち，杭頭での打撃力の波形を求め，(2)測定された杭の賦入量に対応する動的賦入抵抗を式 (10) を用いて算出する，と言う手順である。杭頭での打撃力の波形を求める場合には，測定されている情報によって，次の方法がある。

杭頭での力と速度の波形が測定されている場合 式 (11) を用いて杭頭の打撃力波形を求める。

杭頭での速度波形が測定されている場合 式 (30) あるいは波形マッッチングによってパネル比を求め，これを式 (20) もしくは式 (22) に代入して打撃力波形を算出する。また，パネル比が 1.0 の場合には式 (33)，1.0 未満の場合には式 (34) を用いて打撃速度 V0 を推定する。

杭頭の変位量が測定されている場合 特別な測定装置を用いないペン書き法の場合である。この場合，式 (24) を用いて打撃速度を求める。また，パネル比に関する情報が与えられないので，これを 1.0 として式 (22) を用いる。

打撃力波形を算出する。パネル比が既知の場合には，これを利用，式 (26) に示す方法によって打撃速度を求める。

(3) パネル比の推定結果

表-2にパネル比の推定結果を示す。「速度波形」は，打撃力波形を用い近似式によって推定したパネル比を示している。「杭頭変位」は，杭頭でのリバウンド量と杭の賦入量から動的賦入抵抗を求める方法であり，打撃力波形が与えられないのでパネル比を算出することができない。このため，パネル比の既定値 (= 1.0) を用いている。

測定波形と計算によって求めた打撃力の波形を図-7,8 に示す。両データとも，力と速度の両方が測定されており，打撃力波形はしたがって式 (11) によって求めることができる。図では，その測定された打撃力波形と推定計算による波形を比較して表示している。

246
速度波形を用いてパネ比を推定した場合、R3B ではややパネ比を小さく推定しているため、測定された打撃力波形よりも推定計算波形の方がやや幅広くなっていているが、逆に 1640 ではパネ比が大きめに推定されており、打撃力の継続時間も短く計算されている。いずれも、粒子速度波形を用いた打撃力の推定波形は、実際に測定された波形と類似する。

これに対し、1640 の場合、杭頭の最大変位量のみから推定した打撃力波形と実際の波形の違いは大きい。これほど、杭頭の最大変位量のみしか与えられなかった場合、パネ比を推定する手段がなく、パネ比として既定値 1.0 を用いているからである。図-8(b) に示されるとおり、1640 の実際的なパネ比は 0.22 であり、既定値 1.0 と比較して非常に小さい。このため、図-8(c) に示すように打撃力波形の推定値に誤差が生じたものである。図-8(d) は、パネ比が既定（= 0.22）であるとして変位波形をもとにパネ比を推定したものである。計算波形は、測定波形よりもやや小さいが、両者の差は小さい。R3B の場合、もともとのパネ比が 1.00 と既定値と等しく、したがって打撃力波形の推定誤差は小さい。

(4) 地盤の貫入抵抗の推定

表-3 に本論で示す方法によって推定した杭の動的貫入抵抗、CASE 法による計測値および静的貫入抵抗試験結果との比較を示す。「測定波形」は、杭頭での力と速度の測定波形から打撃力波形を算出したもの、「速度波形」は、測定された速度波形のみを用いて動的な力抵抗を推定し、打撃力波形を求めるものである。また、杭頭変位量は、動的貫入抵抗の推定値を用いて打撃力波形を推定したものである。動的貫入抵抗は、いずれの場合でも貫入抵抗波形と杭の貫入抵抗を用い、式 (10) により算出した値である。

R3B では、パネ比が 1 であったことから杭頭変位による場合でも測定変位、速度波形による場合でも動的貫入抵抗の推定値は、ほぼ 10%以内の誤差にとどまっているが、パネ比が 1 よりも小さかった 1640 では、杭頭変位量のみの場合、動的貫入抵抗が大きめに評価されるという問題がみられる。ただし、パネ比として妥当な値を用いた場合、杭頭変位量による動的貫入抵抗の推定値は、ほぼ 10%以内の誤差となる。

いずれも推定された動的貫入抵抗は、静的載荷試験によって求められた杭の支持力値（表-3 中の「静的支持力」）よりも小さい。これは、杭の打設時に入乱された地盤の支持力が打設終了後に回復するためであり、施工中の打撃記録から杭の支持力を推定し打ち止め管理を行う場合、このような地盤の支持力回復率を（セットアップ係数と言う。）を事前に把握しておく必要がある。

5. 結論

打ち込み杭の支持力管理方法として、杭頭に発生した打撃力の波形を推定し、これに杭の一打撃当たりの貫入量から動的貫入抵抗を推定する方法を示した。特に本論文では従来からのベン書き法による杭のリバウンズ率、貫入量の計測値を用いて、波動理論に基づいた支持力管理を行う方法を示した。

本論文で提案した方法の適用性を東京湾横断道路で測定された 2 種の決打力波形を用いて検証した結果、クッションのパネ比の推定値が妥当であれば動的貫入抵抗の値を実用的な精度で推定できることがわかった。

本論文では、ベン書き法の記録データから打撃力波形を推定する時、パネ比を先駆的 1 とし、実際上適用する場合には使用するハンマの種類、特性および杭との関係から、妥当な値を推定しておくことが望ましい。特に本論文で使用した波形 1640 は油圧クッション付の油圧ハンマによる打ち込み時の波形であり、クッションのパネ比が極端に小さかったため、パネ比 1 を推定してい る杭頭変位量による動的貫入抵抗の推定方法では誤差が大きくなっている。動的貫入抵抗の推定精度を向上させるためには、パネ比の推定精度を高くすることが必要である。すなわち、杭の加速度あるいは変位の時間波形を計測しなければならない。しかし、パネ比が先駆的に与えられれば杭頭の変位量と杭の貫入量のみの情報をによって杭の動的貫入抵抗を高い精度で推定できるものである。ベン書き法のデータに基づく本論文で提案した支持力管理方法を適用する場合、ハンマの種類と杭の関係からあらかじめパネ比をデータベース化しておくことが望ましい。

本論文で示す解析方法では、式 (10) の解を得るために
繰返し計算が必要であるが、入力としてはパネル、杭頭
最大変位量および杭の貫入量のみであり、あらかじめ解
析プログラムをコンピュータに組み込んでおけば、簡し
て簡単に本論で示す解析方法を利用することが出来る。
謝辞：本論文の対象とした杭の静的、動的載荷試験
は、東京湾橋梁道路株式会社が杭の支持力管理方法の確
立を目的として実施した試験の一部である。関係各位
に感謝の意を表する次第である。

参考文献
1) ASCE Report : Pile Driving Formulas, Progress report
 of committee on the bearing value of the pile foun
2) Agershou, H.A.: Analysis of the Engineering News Pile
3) Goble, C.G. Raushe, F. and Likins, G.: Bearing Ca
 pacity of Piles from Dynamic Measurements, Case
 Predictions from Pile Dynamics, J. Soil and Found.
5) 寶町一馬，冬木雄：波動理論に基づいた杭の動的支持力算
 定式の提案，第14回土質工学研究発表会講演集，pp.901-
 904,1979.

6) 境友昭，村上浩：杭の支持力の動的載荷実験的構定 (杭の
 動的支持力式的解釈)，第24回土質工学研究発表会講演集,
 pp.1365-1389,1989.
7) 日本道路協会：道路橋示方書－同解説IV, 下部構造
 部, pp.367-371, (社) 日本道路協会, 平成2年2月.
8) 日本建築学会：建築基礎構造設計指針, p.231, 日本建築
9) 日本橋梁学会，古賀哲治，労技省切削機械技連：打込み時
 の打撃エネルギーと杭の支持力の関係，第20回土質工学研究発表会
10) Bent Hansen and Hans Denver : Wave equation anal
 ysis of a pile - An analytic model - Proc. of Int1. Semin
 ar on the Application of Stress-Wave Theory on Piles,
 pp.3-40,1980.
11) Shiio, Y., Yoshida, O. and Homma, H. : Estimation of
 bearing capacity of steel pipe pile by static loading test
 and stress wave theory (Trans-Tokyo Bay Highway),
 Proc. of Application of Stress-Wave Theory to Piles,
12) 澤井廣之，塚井幸武，吉田俊，本間正幸：東京湾橋梁道路
 大口径鋼管杭載荷試験（その3），第28回土質工学研究発
13) 澤井廣之，塚井幸武，吉田雄幸，境 友昭：多点載荷法による
 杭の支持力の推定，土木学会論文集，No.547/III-36, pp.67-
 74,1996.

(1996.10.18 受付)

A SIMPLIFIED METHOD TO DETERMINE THE BEARING CAPACITY
OF THE DRIVEN PILES

Hiroyuki SAWAI, Yukitake SHIOI, Yoshitaka YOSHIDA, Seiji UEHARA and Tomoaki SAKAI

A method to estimate the bearing capacity of the pile, using the easily obtained data of displacement of a pile head and penetration of the pile or the wave form of particle velocity at the pile head, is presented in this paper. If the wave form of the driving force is estimated, the bearing capacity of the pile should be calculated based on the fact that the penetration of pile is represented by the integration of the particle velocity at the pile toe.

As the result of the examination of the applicability of the method using the actual data, it is shown that pile capacity is determined within the allowable precision.