等価介在物法を用いた弹塑性有限要素解析手法

山口栄輝・堀 宗朗・久保喜延・安部剛史

Key Words: elastic-plastic analysis, equivalent-inclusion method, finite element method
弾塑性解析の基本である微小変位問題のみを取り扱うが、適切な等価条件を設定することにより、有限変形問題などにも応用可能です。

2. 定式化および解析手順

弾塑性問題は、基本的に、次の方程式系で表される増分境界値問題である。

\begin{equation}
\sigma_{ij,j} + \dot{f}_i = 0
\end{equation}

（1）

ひずみ～変位関係式：

\begin{equation}
\varepsilon_{ij} = \frac{1}{2}(\dot{u}_{ij} + \ddot{u}_{ji})
\end{equation}

（2）

構成式：

\begin{equation}
\sigma_{ij} = D_{ijkl}^{op} \varepsilon_{kl}
\end{equation}

（3）

境界条件：

\begin{equation}
\dot{t}_i = \sigma_{ij} n_j, \quad \ddot{u}_i = \ddot{u}_i
\end{equation}

（4）

ここに、\(\sigma_{ij}\), \(\dot{f}_i\), \(\varepsilon_{ij}\), \(\dot{u}_i\), \(\ddot{u}_i\) はそれぞれ応力、物体力、ひずみ、変位、表面力である。また \(n_j\) は境界面に立てた外向き単位法線ベクトル、\(D_{ijkl}^{op}\)は応力増分とひずみ増分の関係を表すテンソルである。なお、上式を始めとする本論文の数式の記述では、総和規約を用いることとする。

以下では、まず上記増分境界値問題の通常の解析方法を簡単に記し、次いで本研究で提案する解析手法について述べる。但し、いずれの手法においても、有限要素法の使用を前提とする。

(1) 通常の解析手法

式(1)，(2)，(4) を用いれば、次の仮想仕事式が導かれる。

\begin{equation}
G = \int_{\Omega} \sigma_{ij} \varepsilon_{ij} dV - \int_{\Gamma} f_i \dot{u}_i dV - \int_{\Gamma} \dot{t}_i \ddot{u}_i dA = 0
\end{equation}

（5）

ここで、\(\dot{u}_i\), \(\varepsilon_{ij}\) は仮想変位増分および仮想ひずみ増分である。\(\Gamma\), \(A_i\) はそれぞれ解析対象領域の全領域、応力境界条件が与えられた境界面を表している。

有限要素法では、解析対象領域を有限個の小領域（要素）に分割し、各要素内で式(5)の積分を評価する。すなわち、

\begin{equation}
G = \sum_\varepsilon G^\varepsilon = 0
\end{equation}

（6）

ここで

\begin{equation}
G^\varepsilon = \int_{\Omega} \sigma_{ij} \varepsilon_{ij} dV - \int_{\Gamma} f_i \dot{u}_i dV - \int_{\Gamma} \dot{t}_i \ddot{u}_i dA
\end{equation}

（7）

である。式(7)の上付き添字 \(\varepsilon\) は、要素に関する応力であることを示している。式(7)に式(3)を代入して、アイソパラメトリック要素を用いて離散化すれば、次式が得られる。

\begin{equation}
G^\varepsilon = \delta U^b \begin{bmatrix}
\int_{\Omega} N^b_i D_{ijkl}^{op} N^b_j dV \\
- \int_{\Gamma} f_i N^b_i dV - \int_{\Gamma} \dot{t}_i N^b_i dA
\end{bmatrix}
\end{equation}

（8）

ここに、上付き添字 \(a\), \(b\) は節点番号を表し、これらについても総和規約を適用している。また \(N^\varepsilon\) は節点 \(a\) に対する形状関数であり、\(U^b\) 内が剛性マトリクス、\(b\) 内の第 2, 3 項が等価節点外力増分ベクトルとなっている。式(8)を式(6)に代入すれば、次式で表される弾塑性解析の有限要素方程式が導かれる。

\begin{equation}
K_T \ddot{U} = \bar{F}
\end{equation}

（9）

\(K_T\), \(\dot{U}\), \(\bar{F}\) はそれぞれ全体系の剛性マトリクス、節点変位増分ベクトル、等価節点外力増分ベクトルを表す。

この解析手法では、連立一次方程式である式(9)を解くことにより \(\dot{U}\) を求め、それをもとに応力などの状態変数を更新することになる。なお、係数マトリクスに当たる剛性マトリクス \(K_T\) は、塑性変形の進展に応じて次元変化する。

\(K_T\) は、多数の成分が \(\Pi\) である球（スパース）なマトリクスであり、さらに非零成分が対角の近くに集中して帯形になっている。こうした性質を利用して計算効率を高めた有限要素方程式の解法が開発されている 1,7,21。本研究では、提案する解析手法との比較検討を行うために式(9)による解析を行うが、その際には、有限要素方程式の解法として最も一般的なスカイライン法を適用する。

(2) 等価介在物法を用いた解析手法

a) 基礎方程式

提案する解析手法では、式(3)に代えて、次式を用いて解析を行う。
\[\sigma_{ij} = D_{ijkl}'(\varepsilon_{kl} - \varepsilon_{ijkl}) \] (10)

ここに、\(\varepsilon_{ijkl} \) は塑性ひずみ増分である。また \(D_{ijkl}' \) は弾性テンソルであり、変形状態にかかわらず一定の値を有する。式(10)の（）内は弹性ひずみ増分を表しており、この式は塑性理論で用いられる基礎式の一つに他ならない。式(10)の採用は、また、塑性域の材料剛性を弾性時の材料剛性に置き換えて解析する方法であると見なすことができる。そして、問題の等価性を保つ、材料剛性の置換を正当化するために、塑性域に \(\varepsilon_{ijkl}' \) を導入していると考えられる。（\(\varepsilon_{ijkl}' \) 分布の具体的な決定法については、次の（b）で示される。）このような置き換えに基づいた解析手法が等価介在物法であり、問題の等価性を保証するために導入されるひずみを、一般にはアイゲンひずみ（eigenstrain）と呼称している。

式(7)は式(3)と無関係に誘導されているため本節でも有効である。式(7)に式(10)を代入して有限要素法で離散化すれば、次式が得られる。

\[
G^e = 8U^e + \left(\int_N N^a D_{ijkl}' N^b dV \right) \dot{U}_i^e - \int_N \dot{f}_i N^b dV - \int_N \dot{f}_i N^a dV - \int_N N^b D_{ijkl}' \varepsilon_{ijkl}' dV
\] (11)

上式（）内が提案する解析手法における剛性マトリックスになるが、材料剛性が \(D_{ijkl}' \) であるため、式（8）の場合と異なり、変形状態によって変化することはない。また、の最終項は、塑性ひずみ増分により生じる見かけの等価節点外力増分ベクトルである。式(11)を式(6)に代入すれば、次の有限要素方程式が得られる。

\[K_0 \ddot{U} = \ddot{F} + \dot{P} \] (12)

ここに、\(K_0 \) は全体系の剛性マトリックス、\(\dot{P} \) は式(11)の[]内第四項に対応するもので、ここでは等価節点アイゲン力増分ベクトルと呼ぶ。

式(12)は連立一次方程式であり、提案する解析手法の基礎方程式である。ここで肝要なのは、この方程式の係数マトリックスに当たる \(K_0 \) が、塑性変形の進展具合にかかわらず、変化しない点である。弾塑性体のつり合い制約を追跡する際には、式(12)の連立一次方程式を繰り返し解くことになるが、\(K_0 \) が変化しないため、連立一次方程式の解法として、逆マトリックスを求めるのであればその計算は一回で十分であるし、LU分解で解を求めの場合でも、時間のかかる三角分解の計算は一度行えば事足りる。このように、本解析手法を用いれば、有限要素解析で多くの計算時間を消費する連立一次方程式の解法において、計算速度の向上を図るための工夫が容易に行える。

なお、初期応力法（initial stress method）（10）は、初期ひずみ法（initial strain method）（2）は、弾塑性モデルで弾塑性問題の解を得る方法（2）（2）（3）などでも有限要素方程式の係数マトリックスは \(K_0 \) となる。しかし、これらの手法では収束解が \(K_0 \) を用いた場合と同じになるに過ぎない。これに対し、本解析手法は、すべての計算過程において \(\ddot{P} \) の解が \(\ddot{P} \) の解と同じになるものであり、これら既存の手法とは大きく異なっている。

b) \(\ddot{P} \) の算出

式(12)を解く際には、等価節点アイゲン力増分ベクトル \(\ddot{P} \) を求めておく必要がある。この \(\ddot{P} \) は、塑性ひずみ増分 \(\dot{\varepsilon}_{ijkl}' \) をもとに算出されるため、\(\dot{\varepsilon}_{ijkl}' \) の分布を求めることがまず必要となる。

本解析手法では、構成式を式(3)から式(10)に変更して解析を行うが、この変更が有効であるためには、塑性域における次式（等価条件条件）の成立が要求される。

\[D_{ijkl}' \dot{\varepsilon}_{ijkl}' = D_{ijkl}' \dot{\varepsilon}_{ijkl}' - \dot{\varepsilon}_{ijkl}' \] (13)

\(\dot{\varepsilon}_{ijkl}' \) の分布は、この式をもとに決定することになる。

有限要素法では、要素剛性マトリックスなどを構築する際の積分計算においてガウス積分公式を用いることが多く、応力やひずみなどの評価もガウス積分点で行われる。本研究の解析でもガウス積分公式を採用するが、この場合、\(\dot{\varepsilon}_{ijkl}' \) の分布としては塑性域内のガウス積分点での値が得られれば十分であり、\(\ddot{\varepsilon}_{ijkl}' \) はそれを用いて次のように算定することができる。

\[\ddot{\varepsilon}_{ijkl}' = \ddot{S} \ddot{e}_p \] (14)

ここに、\(\ddot{\varepsilon}_p \) は塑性域内のガウス積分点における塑性ひずみ増分ベクトル、\(S \) は\(\ddot{\varepsilon}_p \) に依存しない定マトリックスである。以下では、式(13)の等価条件をガウス積分点で満たし、各ガウス積分点での\(\dot{\varepsilon}_{ijkl}' \) を求めることを考える。

\[K_0 \ddot{\varepsilon}_p \] を計算すれば、等価節点外力増分による
節点変位増分が求められる。その結果に、形状関数の微分からなるひずみ-節点変位マトリックス（ひずみと節点変位を関連づけるマトリックス）Bを作用させると、ガウス積分点における、等価節点外力増分によるひずみ増分が計算できる。また、K₀₁Pをもとに同様の計算を行えば、塑性ひずみ増分に起因するひずみ増分が計算できる。これらのことと式(14)を用いれば、次式が導かれる。

\[
\delta \varepsilon = G\delta F + H\delta P
\] (15)

ここに,

\[
G = BK_0^{-1}
\] (16)

\[
H = BK_0^{-1}S
\] (17)

式(15)の \(\delta \varepsilon\) は塑性域内のガウス積分点におけるひずみ増分ベクトルである。式(15)を用いれば、式 (13)で表される条件式が、次のように書き改められる。

\[
A\delta \varepsilon = R
\] (18)

ここに,

\[
A = C^e -(C^e -C^p)H
\] (19)

\[
R = (C^e -C^p)G\delta F
\] (20)

\[
C^e = \begin{bmatrix}
D^e & 0 & \cdots & 0 \\
0 & D^e & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & D^e
\end{bmatrix}
\] (21)

\[
C^p = \begin{bmatrix}
D^p & 0 & \cdots & 0 \\
0 & D^p & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & D^p
\end{bmatrix}
\] (22)

\(D^e, D^p\) は各ガウス積分点において応力増分とひずみ増分の関係を表すマトリックスであり、前者が弾性挙動、後者が弾塑性挙動に対応している。

式(18)は \(\delta \varepsilon\) を未知数とする連立一次方程式であり、これを解けば、塑性域内のガウス積分点における塑性ひずみ増分が得られる。その結果を式 (14)に代入すれば、\(P\) が算出される。

ところで、塑性理論における流れ則（法線則）によれば、次式が成立する \(^{11, 20}\)。

\[
\delta \varepsilon = \lambda \frac{\partial \varepsilon}{\partial \sigma_{ij}}
\] (23)

ここに、\(\varepsilon\) は塑性ポテンシャル、\(\lambda\) は正値のスカラー量である。\(\varepsilon\) は変形状態のみに依存するため \(\partial \varepsilon / \partial \sigma_{ij}\) は既知であり、\(\lambda\) を得ることができれば、\(\delta \varepsilon\) が直ちに計算できる。これは、各ガウス積分点における未知数として、\(\delta \varepsilon\) に代えてスカラー量である \(\lambda\) を用いれば十分で有することを示唆している。このを利用すれば、式(18)の未知数を減らし、計算時間を大幅に短縮することが可能となる。そこで、式(23)を用いて式(18)を次式に変換して解くこととした。

\[
\overline{AL} = \overline{R}
\] (24)

ここに、\(\overline{L}\) は塑性域内のガウス積分点における \(\lambda\) を成分とするベクトルである。式(24)を解き、式 (23)を用いれば、\(\delta \varepsilon\) が直ちに得られる。

c) 計算手順

提案する解析手法の基本的な計算の流れをまとめれば、次のようになる。

(i) 式(24)を解いて \(\overline{L}\) を算出する。
(ii) 式(23)を用いて \(\delta \varepsilon\) を求める。
(iii) 式(14)より \(\overline{P}\) を算出する。
(iv) 式(12)を解いて \(\overline{U}\) を求める。
(v) 応力などの状態変数を更新する。

式(15)の \(G, H\) の算出や式(12)の連立一次方程式の解法に際しては、\(K_0\) を係数マトリックスとした連立一次方程式を解く必要がある。\(K_0\) の形・帯形といった特長を利用すべく、ここでは、スカイライン法をその解法に採用する。さらに、\(K_0\) が変化せず常に一定であることに鑑み、最初に行なった三角分解の結果を記憶しており、それを繰り返し使用することとした。スカイライン法で解される計算時間の大半は三角分解に関連したものであるため、この処理により、計算時間はかなり節約される。

提案する解析手法では、式(12)と式(24)の 2 組の連立一次方程式の解法が解析の要となる。しかしながら、上記の処置を施すため、計算時間の点から見れば、式(24)の解法が本弾塑性解析手法で
は大きなウェートを占める。この式の未知数は塑性域にあるガウス積分点でのλであり、塑性域内のガウス積分点数nがそのまま式(24)の未知数の個数nとなる。こうした観点からすれば、本解析手法は、塑性域のみを主たる計算対象として解析を進めていく方法と見なすことができる。これに対し、通常の解析手法では、式(9)の解が解析の要であり、かつ最も多くの計算時間を必要とする過程となっている。この連立一次方程式の未知数の個数は、解析対象領域の全自由度mに等しい。すなわち、通常の解析手法は全領域を対象とした解析となっている。塑性域が小さければ、nがmに対して十分小さくなる。従って、そのような状況下で提案する解析手法を用いれば、通常の手法で解析する場合に比べて、計算時間の減少が期待できる。これが、本解析手法の有用性を示唆する根拠である。

3. 数値計算例

提案する解析手法の妥当性、有用性を検証するために、以下の2つの例題を解析した。なお、すべての計算において、Sun SPARCstation 2を使用した。

(1) 20孔を有する薄板

等分布引張荷重が作用する有孔薄板をまず解析した（図-1）。この板は等方性を有する均質の材料からなるとし、平面応力状態を仮定して1次元解析を行った。弾性定数には以下の値を用いた。

ヤング率 \(E = 2.0 \times 10^5 \) MPa
ポアソン比 \(\nu = 0.3 \)

またこの材料の一軸引張における初期降伏応力は240MPa。変形挙動は図-2に示す通りである。

多軸応力下の材料変形は、降伏関数（負荷関数）\(f \)が次式で定義され、関連流れ則、等方硬化則に従うミーゼス型モデルで記述されるものとした。

\[
f = J_2 - \frac{1}{3} \sigma^2
\]

ここに、\(J_2 \)は偏差応力テンソルの第2不変量、\(\sigma \)は相当応力である。このとき、応力増分とひずみ増分の関係が次式で与えられる

\[
\begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{xy}
\end{pmatrix} = D^{pp}
\begin{pmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{pmatrix}
\]

ここに,

\[
D^{pp} = \begin{bmatrix}
\frac{E}{1-\nu^2} & \frac{1}{2} & -\frac{E}{2} \\
\frac{1-\nu^2}{2} & \frac{E}{2} & \frac{T_1 T_2}{2(1+\nu)} \\
\frac{1-\nu^2}{2} & \frac{E}{2} & \frac{T_2 T_3}{2(1+\nu)}
\end{bmatrix}
\]

(27)
図-3 要素分割（薄板問題）

\[A = \frac{2E}{1 + \nu} J_2 + \frac{4}{9} \sigma_c^2 H_p - \frac{E(1-2\nu)}{1-\nu^2} \frac{S_{33}^2}{S_3} \] (28)

\[T_1 = \frac{E}{1-\nu^2} (S_{11} + \nu S_{22}) \] (29)

\[T_2 = \frac{E}{1-\nu^2} (S_{22} + \nu S_{11}) \] (30)

\[T_3 = \frac{E}{1+\nu} S_{12} \] (31)

上式で，\(H_p \) は塑性係数，\(S_p \) は偏差応力である。

この例題の場合，式 (22) の \(D^p \) は式 (27) となる。

本解析では対称性を考慮して1/4領域のみを解析対象として，この領域を8節点四角形要素88個，6節点三角形要素4個，総節点数317でモデル化した（図-3）。計算に際しては，四角形要素については4（＝2×2）点，三角形要素には3点のガウス積分公式を適用した。

解析結果として，点A（図-1）における荷重変位（水平方向）関係を図-4に示す。荷重が74.44MPaの時に降伏する点が現れ，これ以降，荷重変位関係は非線形となる。塑性域が生じるまでは問題の線形性を利用して1回の計算ですませ，塑性域発生後は荷重増分を0.12MPaとして計算した。荷重が101.8MPaに達した時点で2円孔間が塑性域でつながり，計算を打ち切った。最終段階での塑性域の広がりを図-5に表している。

2 (1)に記した通常の解析手法でも同様の計算を行った。各荷重ステップで得られたすべての節点変位を提案する解析手法の結果と比較したが，両者は完全に一致しており，本解析手法の妥当性を検証することができた。一方，計算労力については大きな違いが見られた。通常の解析手法では，初期段階より591元連立一次方程式を解く必要があ

のに対し，本解析手法では，解析の最終段階でも17元連立一次方程式を解くに過ぎない。計算労力の差は，計算時間の差となって現れる。表-1は，2つの解析で要した計算時間（CPU時間）を測定し，結果をまとめたものである。通常の解析手法では約24分の計算時間を要したが，提案する解析手法ではわずか49秒で計算を終了しており，大幅な計算時間の短縮が認められた。

(2) 換算空洞
地下発電所用空洞を有する岩盤の弾塑性解析を次に行った。図-6に示す解析対象領域は，外側構
図-6 地下空洞を有する岩盤

岩盤の材料特性は等方性かつ均質とし、弾性定数には次の値を用いた。

体積弾性係数 $K = 3333$ MPa
せん断弾性係数 $G = 2000$ MPa

一軸圧縮荷重下での初期降伏応力は1.83MPa、この荷重下での変形挙動は図-7に示すものを仮定した。

多軸応力下の材料挙動は、降伏関数（負荷関数）f、塑性ポテンシャルgが次式で与えられ、等方硬化則に従う指型のプラジャー型モデルで記述されるとした。

$$f = 0.25 l_1 + \sqrt{J_2} - k$$ (32)
$$g = 0.1 l_1 + \sqrt{J_2}$$ (33)

ここに、l_1は応力テンソルの第1不変量である。
kは降伏曲面の大きさを定める関数であり、図-7の変形挙動から求まる。式(32), (33)の右辺第一項の係数が異なっているため、この岩盤は非関連流れ則に従う材料となる。一般に、関連流れ則はダイラントシーを過大評価する傾向があるため、地盤や岩盤の構成モデルでは、非関連流れ則を適用することが多い。

以上のことより、この岩盤の応力増分とひずみ増分の関係は次のようになる。

ここに、

$$\begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{xy} \\
\sigma_{zz}
\end{pmatrix} =
\mathbf{D}^{ep}
\begin{pmatrix}
\dot{\varepsilon}_{xx} \\
\dot{\varepsilon}_{yy} \\
\dot{\varepsilon}_{xy}
\end{pmatrix}$$

(34)

$$\mathbf{D}^{ep} =
\begin{bmatrix}
\frac{4}{3}G - \frac{M_1 N_1}{Q} & \frac{2}{3}G - \frac{M_2 N_2}{Q} & \frac{-M_1 N_1}{Q} \\
\frac{-2}{3}G - \frac{M_2 N_2}{Q} & \frac{4}{3}G - \frac{M_2 N_2}{Q} & \frac{-M_2 N_2}{Q} \\
\frac{-N_2 N_1}{Q} & \frac{-N_2 N_2}{Q} & G - \frac{N_3 N_3}{Q}
\end{bmatrix}$$

(35)

$$Q = 0.225K + G + 0.1563H_p$$

(36)

$$M_1 = 0.3K + \frac{G}{\sqrt{J_2}} S_{11}$$

(37)

$$M_2 = 0.3K + \frac{G}{\sqrt{J_2}} S_{22}$$

(38)

$$M_3 = 0.3K + \frac{G}{\sqrt{J_2}} S_{33}$$

(39)

$$N_1 = 0.75K + \frac{G}{\sqrt{J_2}} S_{11}$$

(40)

$$N_2 = 0.75K + \frac{G}{\sqrt{J_2}} S_{22}$$

(41)

$$N_3 = \frac{G}{\sqrt{J_2}} S_{12}$$

(42)

この例題では、式(35)が式(22)の\mathbf{D}^{ep}となる。
図-8 要素分割（地下空洞問題）

図-9 荷重-変位曲線（点B）

図-10 岩盤に生じた塑性域

表-2 CPU時間（地下空洞問題）

<table>
<thead>
<tr>
<th>方法</th>
<th>CPU時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>通常の解析手法</td>
<td>3369.6秒</td>
</tr>
<tr>
<td>提案する解析手法</td>
<td>307.8秒</td>
</tr>
</tbody>
</table>

ところで、平面ひずみ状態では $\varepsilon_{xx} = 0$ である故、式(7)の第一項に σ_{xx} は寄与しない。そのため、式(8)の D_{cr} の成分のうち、σ_{xx} に関するものは考慮する必要がない。従って、式(9)の構成に用いる構成関係は、式(35)の D_{cr} ではなく、その4行目を除いた 3×3 のマトリクスである。なお、このマトリクスは非対称であり、その結果、この例題における式(9)の剛性マトリクス K_T は、塑性変形が始まった時点では非対称となる。

計算においては、対称性を利用して全領域の1/2のみを解析した。要素分割は図-8に示しているが、8節点四角形要素125個、6節点三角形要素6個、総節点数436でモデル化している。積分スキームは先の例題と同じものを採用した。荷重条件は、空洞掘削を模倣するために、初期地圧に対応する荷重をあらかじめ空洞面に作用させて初期状態を設定し、その荷重を逐次解放していくこととした。

解析結果として、点B（図-6）の鉛直変位と荷重パラメータの関係を図-9に示している。荷重パラメータは取り除かれた荷重の割合を表し、この値が1に達したとき、空洞面に作用させた荷重がすべて取り去られた状態となる。図-9の結果は、塑性変形が生じ始め荷重パラメータ0.801までを1ステップ、それ以降、すべての荷重を取り除くまでの過程を160ステップで解析したものである。図-10は最終状態における塑性域の広がりを示している。

先の例題と同様に、2 (1)に記した通常の解析手法でも地下空洞問題の解析を行い、各荷重ステップのすべての節点変位を提案する解析手法の結果と比較し、完全に一致していることを確認した。計算労力について見ると、通常の解析手法では、初期段階より842元連立一次方程式を解く必要があるのに対し、本解析手法では解析の最終段階でも56元連立一次方程式を扱うに過ぎない。図-2にまとめているように、計算労力の差は計算時間に反映され、通常の解析手法では約56分の計算時間を必要としたのに対し、提案する解析手法では約5分で計算を終了している。
4. まとめ

本論文では、等価介在物法に基づいた新しい弾塑性有限要素解析手法を提案した。その定式化や計算手順から理解されるように、本解析手法による弾塑性解析では、弾性域が主たる計算対象領域となる。そのため、弾性域の広がりが限界されるような弾塑性問題において、計算時間を減少することが可能となる。

数値計算例として2つの問題を取り上げて解析を行った。いずれの例題においても、本解析手法により、非常に短い計算時間で通常の有限要素解析と同じ解が得られ、本解析手法の妥当性、有用性を実証することができた。

参考文献

9) 山田嘉昭，横内康人：有限要素法による弾塑性解析のプログラミング，培風館，1981年.
13) 森池昇：有限要素法とその応用－最近の話題と発展－，土木学会論文集，第392号／1-9，pp.1～11，1988年4月.
17) 矢川元基，吉村忍：有限要素法，培風館，1991年.
19) 片口栄樹，堀宗朗，久保喜延：等価介在物法を用いた平面骨組構造物の弾塑性解析，構造工学論文集，Vol.41A，pp.9～14，1995年3月.
20) 北田浩：弾塑性力学の基礎，日刊工業新聞社，1979年.
21) 鶴崎久一郎，宮本博，山田嘉昭，山本善之，川井信彦：有限要素法ハンドブック，Ⅰ 基礎編，培風館，1981年.
22) 山田嘉昭：非線形問題解決法の現状と展望，生産研究，22巻，1号，pp.6-14，1970年.

(1996.2.29 受付)
ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS TECHNIQUE COUPLED WITH EQUIVALENT INCLUSION METHOD

Eiki YAMAGUCHI, Munee HORI, Yoshinobu KUBO and Tsuyoshi ABE

In practical elastic-plastic problems, plastic flow is often contained. From this viewpoint, an elastic-plastic analysis method, in which most computational effort is associated with plastic region, is developed in the present study. The characteristic of this method is to replace the material stiffness of plastic region with that of elastic region. To justify the replacement, plastic strain increment is introduced in the plastic region. The main computational task is to determine the distribution of this plastic strain increment. The method is computationally very efficient in problems with contained plastic flow, which is demonstrated by solving numerical examples.