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DYNAMIC VEHICLE DISPATCHING IN A
TRANSPORTATION SYSTEM

By Sadaaki KURODA*

ABSTRACT

This study is an operational research approach
towards the effective design of advanced ground
To this effect, a stochastic
with M

stations connected arbitrarily by routes and the

transportation systems.
model was constructed over a network

relationships between parameters were simulated by
this model.

The model is based on two important postulates.
1) the assumption of complete randomness of pas-
senger demand (homogeneous or non-homogeneous
Poisson process) 2) the adoption of a dynamic
vehicle dispatching policy.
used here in contrast to the term ‘‘fixed”.

“Dynamic’ is a term
Fixed
schedules
time-table.

dispatching policy is a policy which
vehicles according to predetermined
Dynamic dispatching policy is a strategy to dispatch
vehicles without any predetermined time-table, dy-
namically responding to the continuous change of
passenger demand.

Although there are many conceivable kinds of
dynamic dispatching policies, two of them, gc-when-
fll policy and go-when-fill-with-time-constraint policy
were studied.

First, the dynamic dispatching policy which plays
a central role in this study was examined, and the
probability density function of vehicle departure
interval, average passenger waiting time, and average
Next, the
stochastic behaviours of vehicle flows in the network

vehicle loading factor were derived.

such as distribution of vehicles as the function of
time in the network were examined for the vehicles
flows dispatched by the dynamic dispatching policy.
Lastly, it was studied how to control the distribution
of vehicles over the network to realize a smooth
operation of the systems.

CHAPTER I. INTRODUCTION

This study is an operational research to-wards the
effective design of advanced ground transportation

systems. To this effect, a stochastic model was
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constructed and the relationships between parameters
were simulated by this model.

The model is based on two important postulates.
1) the assumption of complete randomness of pas-
senger demand (Homogeneous or non-homogeneous
poisson process) 2)
vehicle dispatching policy.
graphs, the author attempts to justify these two
premises.

the adoption of a dynamic
In the following para-

Although the real transportation demand might
be between the extremes of completely random and
completely deterministic, this study is forcussed on
the case of completely random passenger demand
and tries to give some insight into the interior
structure of a transportation system which involves
probabilistic passenger demand.
should be mentioned here that the exposed passen-
ger demand is a result of potential passenger de-
mand distorted by the existing vehicle dispatching

Furthermore, it

policy. When a trip is motivated in a customer’s
mind (call this a potential passenger demand), this
original motivation to trip is in most cases distorted
by the existing vehicle dispatching scheduling (e.g.
time-table). The dynamic dispatching policy treated
here will less distort the potential passenger demand.

It should be recalled that the customer’s demand
has been proved to be very similar to a Poisson
process in the case of telephone calls in an exchange
center, where potential customer’s demands are
exposed almost as they are.

Dynamic dispatching policy is a policy which dis-
patches vehicles dynamically responding to passen-
ger demand. “Dynamic” is a term used here in
contrast to the term ‘fixed”. Fixed dispatching
policy is a policy which schedules vehicles accord-
ing to predetermined time-table. Dynamic dispatch-
ing policy is a strategy to dispatch vehicles without
any predetermined time-table, dynamically respond-
ing to the continuous change of passenger demand,
analogous to the dispatching of taxis er airport
limousine.

Guided ground transpotation systems have tradi-
tionally used fixed dispatching policies and with

substantial success. However, dynamic dispatching
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policy has been used very little and the efficiency
of this policy is not so much known. This is one
reason why the author is so interested in how the
transportation network systems might respond to
the dynamic dispatching policy. Furthermore, the
introduction of this policy gives the ground trans-
portation systems the attraction of flexible service
that the customer can go just when he wishes to
go. The dynamic dispatching policy is, so to speak,
very much oriented towards the customer’s trip
motivation.

Although there are many conceivable kinds of
dynamic dispatching policies, two of them, go-when-
fill policy and go-when-fill-with-time-constraint poli-
cy were studied. By the former we mean a policy
to dispatch a vehicle as soon as the seats of a
vehicle are filled by customers. By the latter we
mean a policy to dispatch a vehicle when the seats
of the vehicles are filled or when the first arrival to
the vehicle waits X minutes, waiting time limit.

In the chapter I, the stochastic model is des-
cribed in detail. In the chapter W, the dynamic
dispatching policy which plays a central role in this
study was studied, and the probability density func-
tion of vehicle departure interval, average passenger
waiting time, and average vehicle loading factor
were derived. Next in chapter IV, the stochastic
behaviours of vehicle flows in the network such as
distribution of vehicles as the function of time in
the network were examined for the vehiche flows
dispatched by the dynamic dispatching policy. In
chapter V, it was studied how to control the dis-
tribution of vehicles over the network to realize a
smooth operation of the systems.

Although this study should go to the stage of the
optimization problem, the optimization problem was
left as a future research topic and here in this
paper, it was mainly tried to show the possible ap-
proach to the effective design of the transportation
systems by theoretical analysis and by showing the
calculation method required to obtain the relation-
ships between parameters involved.

CHAPTER II. MODEL DESCRIPTION

In this chapter, the stochastic model treated in
this study will be described in detail.

Network

We assume a transportation system with M sta-
tions and routes connecting them arbitrarily. (Fig.
2.1)

Passenger Demand Pattern

It is assumed that at an arbitrary station, say, i-
th station, (M—1) queuing channels are formed as-
sociated with (M-—1) destinations, in the system.
Passenger arrivals to each channel occur independ-
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Fig. 2.2 Passenger Arrival and Vehicle Dispatching
at z-th Station.
ently with Poisson distribution law of parameter
2;;(t), i and j respectively referring to the station
concerned and destination. (Fig. 2.1) For the whole
system, one has a demand rate matrix 4 as follows:

T,
1 2eeen M
170 Apereedim
A:II/l,ﬂ[:From ? l?l [ ng

M Dagy Apgpeeeeer 0

For the almost whole part of this study, the case
of homogeneous Poisson is discussed. However, in
the study of vehicle dispatching policy, the time
dependent demand rate case, i.e., non-homogeneous
Poisson case will also be discussed in the appendix.

Vehicle Operating Policy (Fig. 2.2)

Consider an arbitrary station, say, i-th station.
We assume that vehicles are dispatched independ-
ently in each channel according to the dynamic
dispatching policy and travellers are sent directly
to their through a pre-determined
route, without stopping in the way.

The vehicles which have arrived at the destina-

destination,

tion become empty there, enter into a vehicle pool
of that station and wait for the future demand
there.

Vehicle Pool (Fig. 2.3)

It is assumed that each station has its own vehi-
cle pool. Vehicles demanded by arriving passengers
at that station are supplied from this pool. Un-
loaded vehicles which have just finished their service
enter into this pool and wait for the future demand.

Vehicle Dispatching Policy

For this model, the dynamic dispatching policy
is used which was described in Chapter I. Among
many conceivable kinds of dynamic dispatching
policies, here are studied two kinds of them : go-
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when-fill policy and go-when-fill-with-time-constraint
policy.

Go-When-Fill Policy

Suppose C seats for each vehicle. As soon as
passengers going to the same destination make a
group of size C, a vehicle is dispatched to that
destination, Z.e., a vehicle goes when its seats are
filled.

Go-When-Fill-With-Time-Contraint Policy

In the case of go-when-fill policy, the first arrival
of a group must wait a long time if the last i.e.
the C-th arrival comes very late. To avoid
such an un-favorable situation, a vehicle is dis-
patched when the first arrival of a group waits X
minutes, waiting time limit, even when C seats are
not filled. Of course, if C passengers going to the
same destination arrive before the first arrival pas-
senger waits X minutes, a vehicle is dispatched
according to the go-when-fill policy.

Vehicle Fleet Size and Vehicle Capaecity

In this model it is assumed that all vehicles have
the same number of seats, C. One of the objectives
of the study is to control the value of C, optimiz-
ing the whole system operation.

As for the fleet size of vehicles, it is closely re-
lated with the proposed inventory control policy
described below. The inventory level of vehicles
at each pool is controled so that vehicles are supplied
almost everytime demands occur.

Vehicle Inventory Control

Observe an arbitrary station, say, #-th station.
We can observe here the in-flow and the out-flow
of vehicles. The vehicles carrying passengers from
other stations to the i-th station constitute the in-
flow of vehicles into the vehicle poll of the i-th
station and the vehicles leaving the i-th station for
other stations constitute the outflow of vehicles
from the pool of i-th station. Refer to Fig. 2.3.
As the result of in-flow and out-flow of vehicles, the
inventory level of vehicles at each station pool fluc-
tuates stochastically (Fig. 2.4). As the fleet size
of vehicles and the size of vehicle pools in the sys-
tem are limited, a suitable control must be made
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over the vehicle inventory level and the probability
of the event that the number of vehicles at each
pool becomes in excess or in shortage must be kept
under a specified small value.

The proposed inventory control policy is as fol-
lows : inventory S;, inventory
upper limit Uj;, lower limit L;, vehicle balancing
interval BT; and inventory control confidence level
¢ for each station, the subscript i referring to the
i-th station. At each beginning of interval BT},
the inventory level is set to S;. During the interval
BT;, the inventory level fluctuates as a result of
superposition of in-flow and out-flow of vehicles.
The maximum value is chosen for BT;, BT; satisfy-

choose an initial

ing the following relations :

01\;[31}; PIN;(&)=8;+I1;(t) - 0;() >U;]
+PIN;O)=S;+1;()-0;(H)<L; 1<

where I;(¢) =number of vehicles of in-flow in
time interval #,
O;(t) =number of vehicles of out-flow
in time interval ¢,
N;(t) =number of vehicles in a pool at
time point £.

In this way, for any realization of stochastic pro-
cess of vehicle inventory level, the unfavorable situa-
tion for the vehicle inventory that vehicles are in
excess or in shortage is made almost impossible
(Fig. 2.4).

Optimization

In this model,
of a vehicle; X, passenger waiting time limit; Uj,
S;, L; inventory control variables.
being chosen for these variables, the value of a ccst
function constructed suitably from various considera-
tions on the whole system could be minimized.

CHAPTER III. STUDY ON THE DYNA-
MIC VEHICLE DISPATCHING
POLICY

As described in Chap. II, proposed model assumes
that for each channel of (M—1) queuing channels
of each station, vehicles are dispatched independ-
ently. Thus it is suffice to investigate the vehicle
After

control variables are C, capacity

Optimum values

departure behavior for one arbitrary channel.
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the behavior of vehicle departure of one channel is
studied, we could deduce the other results by super-
posing the independent processes. Thus in this
chapter the discussion is forcussed on the case
where passengers arrive at a station by the Poisson
distribution law of parameter 1, going to the same
destination.

In the following sections, first, the go-when-fill-
with-time-constraint policy will be examined and
next, go-when-fill policy will be discussed. In this
chapter it is assumed that a vehicle can be supplied
without delay as soon as a demand occurs. For
each policy the vehicle departure interval distribu-
tion, average vehicle departure interval, average
passenger waiting time and average loading factor
would be examined. Finally, it is studied how
these quantities are affected by the values of capac-
ity of vehicle C, waiting time limit X, and passen-
ger arrival rate 1, with the aid of computer calcula-
tions.

(1) Go-When-Fill-With-Time-Constraint

Policy

a) Vehicle Departure Interval Distribution Func-
tion

Vehicles will be dispatched in two ways.

(a) Vehicles are dispatched with fill.(Fig. 3.1.1)

(b) Vehicles are dispatched without fill. (Fig.

3.1.2)

Let’s define the following notations : (Refer to

Fig. 3.1.1, 3.1.2)

1st
Arrival C-th
2nd Arrival
Arrival
'(_'rl_‘ W,
4 y L4
t40 I 3T
1€ X 7
& T
4
Last Vehicle Kext Vehicle
Departure Departure
Fig. 3.1.1 Vehicle Departure with Fill.
(k< C)
k-th
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2nd (k+1)th
Arrival Arrival
C-th
1st Arrival
Arrival
Ty — Wy o
=T
£=0 1 % {
L
" T
E +
hicle
Lg:;agiure Next Vehicle

Departure

Fig. 3.1.2 Vehicle Departure without Fill.

Kuroda :

Ti=time from the last departure (¢=0) to the
next first passenger arrival.
W,=time from the first passenger arrival to the
next vehicle departure epoch.
T =vehicle departure interval=7,+ W,
A=passenger arrival rate.
C=number of seats of a vehicle.
X=waiting time limit for the first arrival pas-
senger.
First fw,(¢) and Fy,(t) can be obtained as fol-
lows.
Noting that for the case 0<t<<X (C >2)
FWl(Q:P[‘/Vx{t]
=P(C—1 or more passengers arrive
within #)
and for the case =X, (C>2)
S (X)=P(W,=X)=P(C—2 or less passen-
gers arrive within X)

r C-2,-1¢ !
% 0<t<X C=2
—| €-2 ,—2X &
fW1<t>‘— 5 € @ X) t=X C>2
k=0 k!
L 0 elsewhere C>2
S et
Fyp () = 1 _k§0 —Er 0<t<<X C>2
L 1 t>X C>2 |
........................... (I-1)

Next f7.(¢) and Fr,(¢) can be obtained as fol-
lows :
Jripy=le™  0<t<<oo
Fr(6)=1—e* 0<t<°°}
Noting that T=W,+T,, and that T, and W, are
mutually independent, we can obtain fr(#), Fr(¢),
convoluting fr, (), fw.(t) and Fr,(t), Fw, ().
Note that fyw,(¢) has a spike at X for the case r>
X.

a2 C—1,-at
%-—1—;—'—— 0<t<X C>2
— Cc-1 k-2t
fr)= S (A X)*ke X<t C>2
£=0 k!
L et 0<t<loo  C=1
C o k-2t
k_c% 0=t X C2
—_ Cc-1 -4t k
Fr(H= 1-3 e XH" X<t C>2
E=0 k!
L 1—e® >0 C=1]
........................... (IM-2)

b) Expected Value and Variance of Departure
Interval
Let E(T)=expected value of T
V(T)=variance of T
As T=W,+T,, and T, and W, are mutually in-
dependent,
From (Il-1) and (J-1)’,
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C C-1

E(T)__———-————P(xX C—1)*
+X-PQ X, C-2)
V(T)_i +—-§—<£—1—){1 —-PQ X, O}

+X*P1RX, C——2)——{

C(1X, C=1D]+X-PQ X, c—1>}2

¢) Average Loading Factor
Let’s define the average loading factor 7 :
E(B)
=TC

where B=random variable of number of passengers

in a vehicle
F(B)—expected value of B.
Event [B=£] = Event [(E-1) arrivals in
time X after the first arrival]
and for the case £=C,
Event [B=C] = Event [(C—1) or more arrivals
in time X after the first arrival]

B _ e"ZX(/I X)(k—l)
o om2X k
PlB=C]=3 QX7
k=C-1 k!
Thus,
(AX-PUOX,C=3)+1~C)
PG X, C-2)+C C=3
EB)= (1—-Cre X +C C=2
1 C=1
........................... (I-4)
Therefore,
1-C
C
_EB | POX, C-2)+1 C>3
c (2—6’1){)/2:1——;6‘“”{ C=2
1 C=1
........................... (IM-5)

d) Passenger Waiting Time
Let’s define random variables MW and MW,.

MWk:—/%-(Wl»rWﬁerWk) 1<k<C,

where %=Number of passengers in an arbitrary
vehicle dispatched.
W,=waiting time of i-th passenger.

MW ,=waiting time per passenger of an arbi-
trary vehicle, given that the vehicle
contains %k passengers.

MW =unconditional waiting time per passenger
of an arbitrary vehicle.

(a) The Case Vehicle Departs Without Fill
—Z(Z)Z

* Pz, k)= 2’

129
1st jth
Arrival Arrival th
2nd k
Arrival Arrival
. 3 W, N
TJ 4 dJ
3 g

1 y x +
Last Vehicle Vehicle
Departure Departure

Fig. 3.1.3 Vehicle Departure without Fill,

Let % passengers be in the vehicle. (2<<(C)
Referring to the Fig. 3.1.3, define
T ;=the time between the first arrival and

]‘th

W;=the waiting time of j*
=X-T;.

In this case, we note that (k1) events of Poisson

type with parameter 1 have occured in time X.

The j*" passenger, in this case, becomes the (j—
1>th

arrival.
passenger

event.

Let E(W ;) =expected value of W}, given that the
vehicle departs with % passengers

Pp=probability that a vehicle departs with %

passengers.
Pp can be calculated as follows :
_ E"IX(Z X) k-1 .
EETTRIDT ST 6) T (1-6)

Noting that if the £ events of Poisson type have
occured in time 7', the & times T,<<T,<---T, in
the interval O to T at which events occur are random
variables having the same distributions as if they
are the order statistics corresponding to % inde-
pendent variable U,, U,, ---, Uy uniformly distributed
on the interval O to T (Parzen : Stochastic Pro-
cess, pp. 139~144),

we can derive,

1

E(W;, :X.(l_t_> 1< j<k
Wi 7 AL 7<) (D)
A<k C~1D
However, MW, :—i« (W + Wit -+ W)
k
Then, E(MWk)n? =ZE(W]./,E)
_L g -l
- 2<1 k >X
k“Xclgkgc 1) (T-8)

(b) The Case The Vehicle Departs With Fill

This case is decomposed into the following events:

Event E,=(k—1) arrivals within X after the first

arrival.
E=C, C+1, C+2, -, oo
In the event Ej, (2—1) events of Poisson type
happened in time X, where £=C, C+1, C+2, -

Using the same notations as in (a),

define E(T;, ) =expected value of T';, given that
Event E; happened.
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E(W;,;) =expected value of W;, given that

Event Ej, happened. (W;=T,—T;)

Then, noting the relationships between % events

of Poisson type and order statistics as before, we
get

i—1
E(Tjm) =~]'k— X

C-1
E(Tcw) =7 X
S EWiun=ETe—Tijn)=E(Tcw)—E(T ;)
=(£1)X (#=C, 1< <C)

k
........................... (1I-9)
As for P,=probability that Event E, happens,
_ e“X(X X)k—l
Pk~__(?—'——1)_!— ........................ (I-~10)

Define MWCy= (W, -+ W)

MWTC, is the waiting time per passenger in a
vehicle dispatched with fill, given that Event E,
happens.

1 c
EMWCH=¢ 3 (W)
c 4 —
1 2(0 ]>X=c 1y

=Ej=1 k
(B> C) veeener (M-11)

Thus, from (Ii-6), (I-8), (M-10), (IMi-11),
EQMW)=3 EQMW)-Pe+. 5 EQMWC,) Py

X 2--C
[“E‘PU X, C=2)+=;
C—1—e?X
EMW)y -PQX, C=1)+——"—
(C=2)
=0 (C=1)
........................... (T-12)
In closing this section, the author wishes to men-
tion that the go-when-fill-with-time constraint
policy presents a new renewal model. It can be

rephrased, follows : replace the
material if it received C blows or if X time units
elapsed after the first blow. This kind of renewal
model has not been studied so far and may find
many applications in the future.

(2) Go-When-Fill-Policy

This policy is equivalent to the go-when-fill-with-
time-constraint policy with time constraint X=co.

The notations are the same as those in ihe sec-
tion 1.

a) Vehicle Departure Interval Distribution Func-
tion

for example, as

(A 2)Cted

fr®)= =1 0<t<C oo

O R (I-13)
Fr()=x% —k'__ C>1

k=C .

Kuroda +

b) Expected Value and Variance of T

E(D)=C } .............................. (II-14)
V(T)=C/»?

¢) Passenger Waiting Time

Letting X—o in (II-12), we get
E(MW):%i ........................... (I-15)

(3) Numerical Calculations and Discussion

For the rather small range of 2=0.5~5.0 and for
the rather small range of C=1~30, the relations
between E(T), E(W), n and C, X are given in
Fig. 3.3.1 to Fig. 3.3.6.

It should be mentioned that for each graph, the
case X=oo corresponds to the go-when-fill policy.

As shown in Fig. 3.3.1 to 3.3.3, for high inten-
sity of passenger arrival (1=5.0), the mean waiting
time per passenger is not so much sensitive to the
value of X, but linearly proportionally increases
with the value of C. However for the low inten-
sity of passenger arrival (2=0.5) the mean waiting
time is more sensitive to X than to C. Figures
3.3.4 to 3.3.6 show that for high passeger demand
(2=5.0), the average loading factor is insensitive
to both the value of X and that of C. However,
for the low passenger demand case (1=0.5), 7 is
very sensitive to both of X and C. We can ob-
serve the relationships between C, X and E(TJ,
similar to those between C, X and E(W).

P W1 e W
—

Fig. 3.3.2 E(W) vs. C.

= D (=)

O S SO SO —— —
1 5 pie i 20y 33 1 5 1 15 2% 25 3
>e —C

Fig. 3.3.3 E(W) vs. C. Fig. 3.3.4 7 vs. C.
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These results suggest us an approach to the effec-
tive design of a transportation system to which the
proposed stochastic model is applicable, if a suitable
cost function is constructed for the whole system
operation. (unit of 1, arrivals/minutes : unit of X,
minutes)

CHAPTER IV. STOCHASTIC BEHAV-
IOUR OF VEHICLE INVENTORY
LEVEL IN THE POOL

As described in Chapter II, the in-flow and out-
flow of vehicles are formed at each station pool in
this model. The objective of this chapter is to
study the stochastic behaviour of vehicle inventory
level in an arbitrary vehicle pool.

In the following discussion, the author makes a
reasonable assumption that the whole system starts
at the same time at a certain epoch and begins to
accept passengers as demands from that epoch on.
Let’s call this epoch as the system-start-epoch. The
study will be forcussed on the equilibrium state of
the system operation, where equilibrium state means
the state of the system which can be observed after
a suitably long time from the system-start-epoch.*

(1) Out-Flow of Vehicles in a Pool

a) General Discussion

Let an arbitrary station be i-th station. Vehicles
depart to j-th station at intervals distributed by
Sr;(8), where fr;;(¢) is p.d.f. of departure interval
from i-th station to j-th station, as given in Chap-
ter . After the system-start-epoch, the departure
of vehicles forms an ordinary renewal process. The
ordinary renewal process is meant by the process in
which all the renewal time intervals have the same
p.d.f.
after a very long time from the system-start-epoch,
the departures of vehicles in the interval (8, 6+12)

If an arbitrary time point 6 is picked up

* Even if each station starts the operation at different
time epochs, the system can be in equilibrium state if
we observe the system after a long time from all of
different starting time points.
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can be considered as an equilibrium renewal process,
where the equilibrium renewal process is meant by
the one in which the first renewal time has the
excess life distribution and all other renewal inter-
vals have the same distribution. (Cox : Renewal
Theory, pp. 27~28, pp. 61~66)

Consider this time interval (8, 6+¢) and set the
beginning of the interval 6 to the time origin, 0.
We can calculate the distribution of number of
vehicle departures in time (0, £) as follows : (Fig.

4.1.1)
; ‘Lif tribution
Vehicle Departures | First Departure

A A A .

<———2a long time ad t 'l

System~-Start-Epoch

e Qs

Plcked Up Arbiltrarily

Fig. 4.1.1 Equilibrium Renewal Process For Out-Flow.

Let T;j=interval between vehicle
from (i) to (j)
N;j(t) =number of vehicle departure in inter-
val (0, &) from (&) to (§)
K, (#)=C.D.F. of time to rth departure
Gij(t, Z)=p.gf. of random variable {N;;@):
>0}
Sri;(0)=p.df. of T;j as given in Chapter 1I
Fr,;(£)=C.D.F. of Ti; as given in Chapter II
However, K,(z) is given by
K, ()=1

1 (1
K O=47y j (1= Fr,()du

departure

K, (0= f K = fry@du (r22)

........... e (IV-1)
Then P(N;j(t) :r)=K7(1)~K,+x(t)

Gij(t, 2 =,§ PN (=27

=143 27U Z= D K, (0) e (N-2)

Now let’s call the vehicle departure from (7) to
(/) as a process (i—j). At (i), we can observe
(M—1) mutually independent processes (i—1), ---,
(G—-M).

For the superposed process of (i—M), let

O;(£) =3 N;;(t)
FEN
Po, (¢, 1)=P(0i()=1)
G;(t, Z)=pgf of {O,’(t), t20}
Then,

Gile, Z)=3 POO:()=nZ"=11 Gi;(Z, 1)
r= ixj

v rrreesaaaees eeeens (IV-3)
(Refer to Fig. 4.1.2)
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Fig. 4.1.2 Superposed Vehicle Departure From (i)
To All Other Stations.

As we have already obtained fr;;(#), Fz;;(#) in
Chapter M, we can derive K,(z) by (IV-1) and
G;;(t, Z) by (IV-2) and finally G;(Z, #) by (IV-3).
Thus we can know the distribution of number of
superposed vehicle departure in time ¢ from i-th
station to all other stations.

b) Dynamic Dispatching Policy

Applying the previous formulae given in ‘(1)
General Discussion”, the necessary probabilities are
calculated using f7(2), Fr() and E(T) given in
(M-2), (WM-3), (M-13) and (MM-14).

(2) In-Flow of Vehicle in a Pool

a) General Discussion

Observe at the i-th station the vehicle arrivals
from k-th station. The arrival of vehicle will form
The distribution of
time to the first arrival from the system-start-epoch
will differ from those of all other following arrival
intervals, due to the effect of travel time from the
k-th station to the i-th station. Other arrival inter-
vals have the same distribution f7.,(¢) as given in
Chapter . However, if an arbitrary time point
is picked up after a long time from the system-
start-epoch, the arrivals of vehicles from (%) to (i)
in interval (6, 6+¢) will be an equilibrium renewal
process. (Cox : Renewal Theory, pp. 27~28, pp. 61
~66)

Consider the time interval (0, 6+¢) and set 8 to
the time origin, 0.

a modified renewal process.

Let Ng;(¢) =number of vehicle arrival in interval
0, ) from (k) to (i)

We can calculate the distribution of number of
vehicle departure in time (0, #) in the same way as
in section 1.

For the superposed vehicle arrival from all other
stations to Z-th station,

let  Li(e)=X Ngi(®)

Kxi

Prt, =PL;(t)=7]
GKZ'(Z, Z):pgf of {I,'(L‘), [20}
Then

Gitt, Z>=§0 PUi(t)=r)Z" }
=1 Ggi(t, Z)
Kaci

b) Dynamic Dispatching policy

Kuroda :

The necessary probabilities can be calculated in
the same way as in the section 1.

(3) Fluctuation of Inventory Level

—Superposition of Out-Flow and In-Flow of Ve-
hicles—

a) General Discussion

Observe the vehicle pool of i-th station. Due to
the superposition of out-flow and in-flow of vehicles,
the inventory level fluctuates stochastically.

Let S;(&)=S;+L;t)—0;(®)
where S;=initial inventory at time O.

1;(#), O;() as given in the section 1 and 2 of
this chapter.

S;(¢t) =superposed inventory level at time ¢

P(Si6) =m) =3 P(Si-+ ()= 0i(0)
=n/0;(¢) =k)
<P(O;(t)=k)
=3 Py =n-+k=S0:(0)
=BPO;(1)=h)
Independency of I;(¢) and O;(t)
PL;()=n+k—S)PO;(t)=k)

7 OP]i(l, n+k—S,~)PO,~(f, k)

Because Po,(t, k) and Pr;(¢, k) are zero for k<0,
2 Pi,(¢t, nk=S)Poy(t, B),

if n—S;>0

PSi=m={ iz
R gv Pr.(t, n+k—S8S)Po,(t, k)

if n—8;<<0
........................... (IV-5)

Thus P(S;(¢)=n) is given in terms of Pr(¢, k)
and Po,(¢, k) which are already obtained in previous
sections.

b) Numerical Calculations and Discussion

As for the go-when-fill policy, the calculation of.
P(S;(#)=n), was programmed for the electronic
computer according to the formula (IV-5). Typical
numerical results are given in Fig. 4.3.1 to Fig.
4.3.4.

For these examples, the following 4 was chosen:

T,

1 2 3 4
170 1.0 0.4 1.0
210.5 0 0.4 0.5
310.5 1.0 0 0.5
41L0.4 1.0 0.4 0

(unit of 2;; : arrivals/minutes)

Fig. 4.3.1 to Fig. 4.3.3 show the probabilits of
different inventory levels for C=5 at different time
points. Fig. 4.3.4 is for C=10. Due to the struc-
ture of the demand matrix 4, the station 2 has the

A=]2;;ll=From

tendency to collect vehicles as time goes on and the
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Fig. 4.3.1 Probability of Inventory

Level ar STA. (1).

0.300% Probability
STA. (2}
‘G0

520 o.4s

gz

Fig. 4.3.4 Probability of Inventory Level at STA. (2).

station 1 and 3 have the tendency to lose vehicles,
while the station 4 has a good property that the in-
flow and out-flow of vehicles are well balanced. The
effect of vehicle capacity C on the probability of
inventory level can be observed by comparing, for
example, Fig. 4.3.2 with Fig. 4.3.4. Variance of
probability and the tendency of collecting vehicles
are decreased by increasing the value of C. These
figures were shown to visualize the stochastic be-
havior ot inventory level at each station of the net-
work for the given value of C and 4. How to
apply these results to the effective design of a trans-
portation system will be discussed in Chapter V,
section 2.

CHAPTER V. INVENTORY CONTROL
OF VEHICLES IN POOLS

So far it has been assumed that vehicles can be

Fig. 4.3.2 Probability of Inventory
Level at STA. (2).

/.
Pl i

Fig. 4.3.3 Probability of Inventory
Level at STA. (4).

supplied without delay from vehicle pools as soon
as demands occur. This assumption implicitly re-
quires the infinite number of vehicles in each pool.
To remove this rather unrealistic situation and to
make the model closer to a practical one, an inven-
tory control is carried out over vehicles i each
pool so that, with finite size of vehicle fleet and
finite size of vehicle pools, the whole systern may
operate as if there were infinite vehicle supplies and
every demand may be satisfied without delay.

Besides the objectives described above, this inven-
tory control has another important end that the dis-
tribution of vehicles is smoothed over the whole
system periodically.

(1)

The proposed inventory control policy is given in
chapter 1.

Note that in this vehicle inventory model, both
the quantity of demand and that of supply are ran-
dom variables.

Inventory Control Technique

Furthermore the demand can occur
at every time point continuously and so can the
supply.
tory model have rejected the direct application of
the present technique of inventory control already
established and required a control technique de-
scribed in chapter IL.

These special characteristics to this inven-

As mentioned, the inventory control technique
makes almost impossible the unfavorable situation
that the vehicles are in excess or in shortage in
each pool. Besides this, the inventory control
strategy has another important objective. As studied
in chapter IV, fluctuation of inventory level depends
on the rate of passenger flow, %;;. Thus, some
station has the tendency to collect vehicles, leaving
The inven-
tory control technique balances and smoothes vehicle

other stations in shortage of vehicles.
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BT, vs. S

distribution over the whole system by resetting the
inventory level of each station to S;, initial inven-
tory level, periodically at each end of the balancing
period BT;.

Here the author wishes to spend a few words
about the relationship between the inventory con-
trol model and the optimization of the system opera-
tion. Upper limit U; of inventory level determines
the size of each pool (i.e. construction cost of pool).
Initial inventory level S; will be a factor to deter-
mine the fleet size of vehicles along with U; (vehi-
cle capital cost). Balancing interval BT; will be
associated with balancing cost of vehicles because
balancing vehicles at each BT; requires the trans-
portation cost of vehicles. Thus, U;, L; S; and
BT; will be control variables in the model in an
optimization problem of the whole system along
with the capacity of vehicle C and passenger wait-
ing time limit X.

(2) Numerical Calculation and Discussion

For the go-when-fill policy, a subroutine EXCSHT
was programmed. The subroutine EXCHST cal-
culates

PLN;(&)>U;]+ PLN;(£)<<L;]

= ¥ PIN@O=nl+ 3 PINit)=n]
a=Ui+l n=L;-1

.
121
;:
350!
STAY)
L): 1
o=0.01
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Fig. 5.2.2 BT, vs. S,.
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Fig. 5.2.3 BT, vs. S,.

Using the subroutine EXCSHT, maximum BT;
which satisfies the following relation was obtained
for different values of C, U;, S;, L; and given «.

Max P[N;&)>U;]+P[N;(0)<L1<ea
0LE<<BT;

Fig. 5.2.1 to Fig. 5.2.7 were obtained for the
same demand matrix 4 as given in chapter IV, sec-
tion 3, (b) and C=5, 10, 15, 20; L;=1; U;=10, 15,
20, 25, 30; S;=1 to U;; ¢=0.0.1.

As the relation P[N;(#)>U;1+P[N;(tH)<L;l<e
was examined at every 10 minutes for £=0 to 100
minutes and at every 20 minutes for #=100 to 400
minutes, rugged lines were got in these figures.

From these figures, several interesting observa-
tions can be made.

(1) There are some optimum values for .S;
which maximize BT; for given 4, C, U;, L; ¢ and
station.

(2) As described in chapter IV, for the demand
rate matrix 4 which was used here, station (1) and
(3) have the tendency to lose vehicles, while station
(2) and (4) have the tendency to collect vehicles :
besides, station (4) has a nice property that the in-
flow and out-flow of vehicles are almost balanced.
These things are reflected in these figures. For ex-
ample, in Fig. 5.2.2 to Fig. 5.2.5, station (1) and

~—=> BT {mia.}

STA.{9)
=1

STa2)
cais
Lyt
o=0.00

o 1
12345 10 1

Fig. 5.2.4 BT, vs. S;.

Fig. 5.2.5 BT, vs. S;.

Fig. 5.2.6 BT, vs.
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(3) have the optimum values of S; near the upper
limit of inventory level because these stations are
apt to lose vehicles, while station (2) and (4) have
the optimum values of S; near the lower limit of
inventory level because they are apt to collect vehi-
cles. Station (4) has more than 400 minutes for
BT, at S;=4 to 6 and U,=30 because of the nice
property that the in-flow and out-flow of vehicles
are well balanced, whereas at other stations BT; are
250 or less minutes because of their more conspi-
cuous tendency to lose or to collect vehicles.

(3) The values of S; are sensitive to the value
of BT; in such stations as station (4) where the in
flow and out-flow of vehicles are well balanced.

(4) BT; can be increased almost linearly pro-
portionally to the value of U; with the values of
all other parameters being not changed.

(5) The optimum values of S; for given U,
L;, o and at given station are not changed by chang-
ing the value of C. However, the value of BT}
can be increased almost linearly proportionally to
the value of C. For example, at station (2), for
U,=30, L,=1, BT,=60minutes for S,=3 and C=
5: BT,=120min. for §,=3 to 5and C=10: BT,=
200 min. for S,=3, 4 and C=15: BT,=280 min.
for S,=3 and C=20.
etc.

These figures can be used in various ways as an
aid to the effective design of transportation system
for which the model was constructed. For example,
the following questions can be answered :

(1) For given 4, C, U; and «, and at the given
station, at every how many minutes must the vehi-
cles be balanced and at what value of the optimum
initial inventory level S;?

(2) For given 4, C, « and at given station,
what value of U;is necessary in order to secure the
value of BT; larger than some specified value?.
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Or, for given value of 4, @, U; and at the given
station, what value of C is necessary in order to
secure the value of BT; larger than some specific
value ?

etc.

CHAPTER VI. CONCLUDING REMARKS

In concluding this study, the author wishes to
spend a few pages in discussing optimization of the
whole system operation and a few future research
topics which lie in the direction of developing this
study further.

In the optimization problem; input is the passen-
ger arrival rate matrix 4; control variables are in-
dividual vehicle capacity C, passenger waiting timit
X, inventory upper limit U;, lower limit L;, initial
inventory level S;, inventory balancing interval BT;;
the major outputs will include (1) revenue from
passengers, (2) penalty due to average passenger wait-
ing time, (3) vehicle running cost, i.e., fuel cost,
vehicle maintenance cost and drivers’ cost, (4) vehi-
cle capital cost, i.e., production cost and deprecia-
tion cost, (5) construction cost of vehicle pool, (6)
vehicle balancing cost, etc.

Choosing optimal values for C, X, U;, L;, S;, BT},
the cost function couled be minimized. This is, in
general, reduced to a non-linear mathematical pro-
gramming problem.

As for a few future research topics which would
extend the present study further, the following
items would be listed :

(1) Time-dependent arrival rate

In this study, time-independent arrival rate (homo-
geneous Poisson) is treated. Because the real trans-
portation demand rate is time-dependent, the whole
discussion in this study must be made also for time
dependent arrival rate, although in the appendix,
the study of dynamic dispatching is given for the
non-homogeneous Poisson case.

(2) Go-when-fill-with-time-constraint policy

Numerical calculations for vehicle in-flow and out-
flow and vehicle inventory level.

In this study, these kinds of numerical calculations
were note done for go-when-fill-with-time-constraint
policy. The analytical calculation requires compli-
cated inversion of Laplace transform of irrational
functions. - However, by repeated use of a subroutine
which calculates the integral value of any function
by Simpson’s formula, the desired probabilities can
be calculated by electronic computer.

If, in this way, a subroutine is programmed which
calculates p[N,;(t)=n] for the go-when-fll-with-
time-constraint policy, the same quantities as those
presented in this paper can be calculated using this
program.
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Furthermore, it should be mentioned here that
referring to Fig. 4.3.1 to Fig. 4.3.4, the distribu-
tions of number of vehicles dispatched or arriving
in a given time are very symmetric even in rather
short intervals for the demand matrix 4 which was
used. This observation leads us to the study of
possible application of limit theorems for renewal
theory which ensure us to treat the distributions of
renewals in a given time as normal distributions.
The approximations by normal distribution would
make various calculations significantly easier.

(3) Vehicle control model

In the study of inventory control, the vehicle in-
ventory control of each station was studied independ-
ently of those of other stations. However, one
must proceed further to the investigation of inven-
tory control of vehicles taking into considerations
the interaction between station pools of the whole
system, 7.e., as a multiechelon inventory system. In
this case two possible types of multiechelon inven-
tory systems may be considered. One type is to
redistribute vehicles through a central vehicle pool
which smooths the distribution of vehicles acting as
an adjustment pool to all station pools of the sys-
tem. The other type is to balance vehicles over
the whole system through moving vehicles directly
between stations, 7.e., from stations with excess in-
ventory level to stations with low inventory level.
The latter type requires to solve a classical trans-
portation problem in choosing an optimal assign-
ment of vehicle transhipment among stations of the
network, if the vehicle disribution is carried out at
the same instant for all the stations of the system.

(4) In this study the same passenger wait-

ing time limit X was used for all pairs
of stations of the system.

It will be interesting, if different passenger wait-
ing time limits were chosen for different pairs of
stations of the system (for example, X;; for the
travelers’ flow from (J) to (j) of intensity 2;;).

This being done the number of control variables
will be increased significantly large and the model
would be made more flexible, although the optimi-
zation problem would be found more complicated.
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DEFINITION OF SYMBOLS

p.d.f.=probability density function
C.D.F.=commulative distribution function
Sfr (@) =p.d.f. of random variable T evaluated at ¢
Fr(t)=C.D.F. of random variable 7" evaluated
at ¢
p.g.f.=probability generating function
(7) =i-th station

k
Pz, ) =3 e?2i]i |
=0

S =J:f(l)€"“dt=Laplace transform of f(¢)
L1{f*(s)} =inverse transform of F*(s)
APPENDIX

STUDY ON THE DYNAMIC VEHICLE DISP-
ATCHING POLICY FOR NON-HOMOGENEOUS
POISSON CASE

Because the real transportation mean demand rate
is time-dependent, the study of the transportation
systems should be made for mean arrival rate. Al-
though the whole discussions given in this paper
should be repeated for time-dependent arrival rate
only the study of the dynamic vehicle dispatching
policy for non-homogeneous Poisson case is given
in this appendix, other discussions left as a further
study.

1. GO-WHEN-FILL-WITH-TIME-CONSTRAI-
NT-POLICY

In this section, the case where 1;; is time-depend-
ent, 7.e., non-homogeneous Poisson case will be in-
vestigated, and the results of the same kind as in
chapter Il would be obtained.

Dispatching policy adopted is the same as given
in the chapter I, that is,

Dispatch vehicle if C passengers arrive or if the
first arrival waits X-minutes.

Where C=number of seats in a vehicle (C>1)
the non-homogeneous

Passenger arrival is of

Poisson type with the continuous mean value func-
. tte
tion of m.(2) =J 2(u)du.

.

What we wish to investigate is,

(1) Conditional vehicle dispatching interval dis-
tribution, given the last vehicle dispatched at time
point . We are going to answer the question at
what time the next vehicle will be dispatched, given
the last vehicle was dispatched at time 6.

(2) Conditional average passenger waiting time,
given the last vehicle was dispatched at time 0.
With a prior knowledge that the last vehicle de-
parted at time 6, what will be the average waiting
time of the passengers departing in the next vehicle ?
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(1) Some Properties of Non-homogeneous
Poisson Process and Related Useful
Theorems.

Here several theorems on non-homogeneous Pois-
son process will be presented. They are important
to the present study. These theorems will be re-
ferred to by their ordered numbers in the later dis-
cussion. Proofs given by the author himself ex-
cept for theorem 2 will be omitted here for the
limitation of the amount of pages.

Theorem 1.

For non-homogeneous Poisson process with con-

¢
tinuous mean value function m (&) :JOZ(u)du, we
have the following probability generating function,

G(Z, 1, ) =3 PN+ =N =n)-2"

= E(ZNC+0-NGY) =exp[ (Z—1) f ) du]

N(t+1)—N(z)=Number of occurrence of
events in the time interval [z, £+7]

where

and P[N(+1)—N(z)=n] =71;-e"”r(‘> (m ()"

£ 4
where m.(2) .—_j * Auw)du

Theorem 2.
Define a stochastic process {M(u), >0} by
M@u)=N(Om. " (w) u=>0
where {N.(2), >0} is a non-homogeneous Poisson
process with continuous mean value function m,(¢)

:JIHX (w)du and u:ft“/l(u)du:m,(t) .

EM@))=ENm.))=m(m, ()
=m. () =u.

{M(u), u>0} is a homogeneous Poisson process
with intensity 1 (Parzen : ‘‘Stochastic Process’’ page
124-126) .

Theorem 3.

Let {N(), >0} be a non-homogeneous Poisson
process with continuous mean value function m.(z)

:Jll (w)du.
0

Define a stochastic process {N,(z), >0} by N,(®
=N(+17)—-N(r). Given that N.(&)=Fk, k times
1< Tty (v, T+1t) at which

events occur are random variables having the same

in the interval
distribution as if they were the order statistics cor-
responding to % independent random variables U,
U,, --+, U, with common distribution function,

m. (u)
m.(t)

where m.(u) =f+u1 (s)ds.

Fy(u) = O0<u<t

Theorem 4.
Given that £ events of non-homogeneous Poisson
with continuous mean value function .(z) have
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happened in time [z, r+£], the time between ¢ and
the time of #-th arrival has the following probability
density function.

o k! Ar+u)
PU=w =y, (lz—i)!( o (X) )

.(mr(u) )"“ A, )’”
m(X) ( m: (X)

and
o k! e+ X—w)
W=l =iyt ()
.(m,(X—w))i”‘<l_m,(X——w) ki
m (X) m (X) >

This is the direct result from theorem 4.

Theorem 5.

In the same situation as theorem 4, i.e., given
that %2 events of non-homogeneous Poisson have
happened in time (7, t+X),

X
E(WiN (X)=k) =J’0 P(W;=w|N.(X) =k wdw

“jx k! (m,(X—w))i*‘
o G- G-I\ m.(X)
m (X —w)\* 2+ X—-w)
'(l- me(X) ) Xy wdw

Define MVV;‘,:% (W + W4 =Wy

k
then ECQMWAN,(X) =k = I E(WiN.(X)=h

1 X
:mﬂ m.(w)dw
(2) Vehicle Dispatching Interval Distribu-
tion Function
Vehicle will be dispatched in two ways :
Case T ------ dispatched with fill (Fig. A-1)
Case I[..---- dispatched without fill (Fig. A-2).

1st 2nd C-th
Arrival Arrival Arrival
/ Tl=s "
o L
o+s |- |
)
Last & X A
Vehicle Vehicle
Departure T 4 Departure
Fig. A 1 Case I For Vehicle Departure.
1st 2nd k+1
Arr%val Arrival k(<C) (20)
T.,=s -
| ) W :
8| \ 1 K
G+S)’]
I X
Last 3 7 ;L
Vehicle¥ ¥ Vehicle
Departure Departure

Fig. A 2 Case I For Vehicle Departure.

Define
T,=time from the last vehicle departure to
the first passenger arrival.
W,=time from the first passenger arrival to
the departure time of the next vehicle.
T =departure interval.
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f=time point of the last vehicle departure.
(Note that T=T,4+W))
X=waiting time limit.
Fy ., (t]s) =P[W,<#| the first arrival is at s].
JSwi(tls) =p.d.f. corresponding to Fyy,(4s).
Fr (216) =P{T,<¢t| the last vehicle departs at time
f].
Sr:(t|8) =corresponding p.d.f.
Fr(40) =P[T<t| the last vehicle departs at time
a1,
fr(2)6) =corresponding p.d.f.
For 0<t<<X
Fw,(¢s) =P[C—1 or more arrivals between s and
s-+2]
For t=X,
Fwi(Xls)=P{C~2 or less arrivals in (s, s+X)]
From theorem 1

Fun@tl)= 5 —em®(ny@)t 0<t<X
r=C-1 k!
Fa (X} =1

=X
fw,(t[s)z_aj"_x;n?(@
(g (2))C-* N
=Wl(l+s)e O (0<t<X)

c-2 1
Swni(X1$) =3 e ma(X))*
k=0 R.

=X
........................... (A-1)
Next,
Fr (2|6) =1—P(T,>t|6)
=1—gms®)
FriCEle) =20 +)e M@ eiiiiiiiiiininninn (A-2)
Next,

Fr@n = PT<dT,=s, 0)frisin)ds

=f;P(W1£t—SITx=S: ﬂ)le(SW)ds
(1) The case 0<t<<X
Then, ¢—s<X
From (A-1),
P(W,<¢~s/T,=s, ) =Fy,(t—s/s+6)

-5 Mg (t—9)F

] e~ Ms+o(t-5)
k=C-1 M

From (A-2),
ST =2(s5+0)e !
tom (meya(t—))F
Fr(t0) = MPs+\> 7077
T (#16) jom%-x k!
s ot -2 (5+6)
em(s)ds

0 F
Freeloy=2ELHD_SEHD om0

(ii) The case t>X
fr (t/ﬁ)dt:J?P[tﬁT: T+ W<t +de| T, =s,0)
S1:(s/8)ds
=(f:fwl(t—sls+ B)fy,(s/(i)ds>dt

Kuroda :

Frtl0y=| Firse=s0+5)fr.(si0)ds

Swi(¢—s/s+8) has a mixed distribution as follows :

£ (t-s]s+e)
W

Spike
£ (X]s+8)
y

> (t-s)
[¢] X

We interpret fi,(¢—s/s+0) as &-function of
magnitude fi,(X/s-+8) at the point (t—s=X).

Frti0) = furie—sls+ 00 e (sin)ds

{7

Swr(—sls+0) fr,(s16)ds
However (0<s<t—x—¢) implies (t—s>x++¢)

Thus,
J;_x-gfwl(t——s]s—l— O fr.(s]0)ds=0
(t—X—e<s<t—X) implies (X<t—s<X+¢),
and (¢t —X<s<t) implies (t—s<X).
Frem=["" L X0 inas
+j’ A(t+(sée_‘;’;m4)

< (msya(t—5))C-2f,(s|0)ds
- (Z(S'tjzﬁ))z oot J 2_xz(s+0)

1621
s (Mepo(t—))C s+ 3 —-
€ K=o k!

t-x

t=-x
.Jt e‘mg(s«}x)(ms+5(x))kl(s‘+t9)d5
t~x
Let I=lf

. e~me(x+5)) (54-0) (ms+g(x))kd5

t-x-~e

. . d [t
lim /=lim —— e-mls+a) ) (s 6)
e»0 e»0 de tex-¢
< (mgsg(2))¥ds
=t —z+0)e” 0O (my_p1g(2))*
Thus,
A(t+8)

Jro)= ©=D1 e~ (my.prg(2)) €2

c-2
+I32’07€1T At—2+)e" "D (s pyg(2))®

(3)) Expected Value of 7
L /]
BT = [ 285 e ma om0 s

o [T TR e me_ara(a) O lede

c-2 1 [«
+X ——-—J A +t—x)e-me®)
Koo k!«

(Mg g (XY Vb oeoeereveiininninnnn (A-5)
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(4) Mean Loading Factor
c
E(B/6) :BZ'IB-P(B/H) s

where B=number of passengers in a dispatched
vehicle
P(B/8)=Prob (next vehicle dispatched with
B passengers, given the last vehicle
dispatched at 6)

P(Bif)= j TP(Bls+0) frus (:/0)ds

where f1,,4(s/0) =conditional p.d.f. of time to the
first arrival from the last vehicle
departure time, given that the last
vehicle departure is at epoch 6.
In the case B<C
P(B/s+6)=P(B~—1 arrivals in time(s+0, s+0-+x))
_ e, (2))B-1
(B-1)!
. @e=ms+0D (Mg, g ()2~ (s +6) e O)ds
: P(B/(i):jo 2
In the case B=C
P(B/6+s)=P(C/0+5)=P(C—1 or more arrivals in
time (8+s, 04-s+.2))
_ D e (m e (2)k
Tr=Te1 k!
PClo)= 3 J o ()]
E=C-1]0 k!
«A(s+0)e-meldds
Gy, [2emm (myig(x)) B2
ECBI5) :BEIB.JO (B—1)!
A(s+0)e-meds
+C ¥ J': =m0 (g (2))*

k=C-1 k!
S ICRN ) Vet O ST (A-6)
Let 7=average loading factor.
7=E(Bj6)/C

(5) Average Passenger Waiting Time
(i) Case I The vehicles are dispatched without
fill. Suppese vehicles are dispatched with k(<<C)
passengers. It means that (£—1) passengers arrive
with in X minutes after the first passenger arrival.
Refer to Fig. A 2
Define E(W,/s)=conditional expectation of W,
given the 1st passenger arrived
at s time units after the last
vehicle departure,

where Wk=% (W, +=Wysde = W)

=waiting time per passenger in a vehicle
and W;=waiting time of /-th passenger in a vehicle

EW =J:E(Wk/3>f7‘l (s)ds
Wi+ Wyt et W,y / >
7 $

EW /s -—-E(

k-1 W+ + Wy
=77 E( F1 /”“)
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1
+ g EWi)

From theorem 5,

W,+--+W, 1
E( i1 /s>- ms(x)f ms(w)dw

and E(W/s)=X
o k-1 1
EW/s) =7 —————nl <x) 7

—l/k\: S( ) m (w)dw}

As we are studying the problem with condition

J ms(w)dw -+ z

that the last vehicle departed at time 6, the above
expression is rewritten as follows :
o 1 k—1
EW s, 6) =——<x4-——~ms+ﬁ s [meraturdw)
B0 =] 4 (e 2o [matwrdw)
D ICE N VAL LY £ ISP (A-T)

where we defined E(W ,/0) =conditional expectation
of W, given that the last vehicle
departed at epoch 4.

(ii) Case II Vehicles dispatched with fill.
This case is decomposed into the following events.
Event Ep=(k—1) arrivals within = minutes after
the 1st arrival, (=C, C+1, C+2, -0
Suppose event Ep happened. (Refer to Fig. A 3)

i-th
1st C-th k-th
Arrival Arrival

il e,
s — Vi ]
0 4 {

!
ste | l |e+s+)(
A

Last Vehicle
Vehicle Departure
Departure

Fig. A 3 Event E,.

Define W;=1i-th passenger waiting time
W,=time between vehicle departure and
time point (0-~s+x)

Vi=W;+W,
Define E(W /s, 8) =expected value of W,, given
s and 0,

where Wk=%(wl+m+wc)
=~16(W1+~--+Wc_‘) (Note that We=0)
EQW4/6) = j CEQW 4, ) fr o ds

=J:E (W rls, 0)2(s+8)eme)ds
As Iﬁfi== ‘fi—— ‘170,
Wi=n

C—
C
E(W s, )= [X+E(V,t+Vels, 0]
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C-1
——C—E(Wol& )
(Note that V,=X)

From theorem 5,

X _ _ C_
EW.fs, o>=J0(C_<k D! (m“s(x w)) 2

D1 R-CH! Msio(L)
.(1_ msw(x—w))k‘c. AWs+0+z—w) wdw
Msrg(T) Msyo(T)
[ %=D! myy (2 —w)\
EWils, ‘9)—fo(i-2>!(k—i)!< ENES) >
.<1~ nzsw(x—w))k“'. A(s+0+x—w) wdw
Msye(X) My (L)
........................... (A-8)

(iii) Define Py, ;=P(k—1 arrivals within = min-
utes after the 1lst arrival, given the
1st arrival is s time units after the
last departure)

Pp=P(k—1 arrivals within & minutes after
the 1st arrival)

Ppis= Mt (g g ()

_1
(k—D)!
(from Theorem 1)
1 -]
s Pk:(k_*-—mL 2(s+0)e-mo+D (my o (2))* ' ds
(for B=1)--vee- (A-9

(iv) Define E(W/0)= 5; E(W ,|6) Py,
where E(W/0) =conditional expected value of wait-
ing time. per passenger in a vehi-

cle, given that the last vehicle de-
parted at time 6.

. c1 o
EW/0) =k2=IE(Wk/0>Pk+k_CE(Wk/ﬁ)Pk

From?(A-7), (A-8) and (A-9)
k—1

. C-1 o™ 1 —_ £
EGT9) :kgl{fo i:?<x+——————ms+ﬁ <x>Joms+g(w)dw>]

(s o>e—mo<s>ds}<7_1—l)—!

oJ :x (s+8)e-ms+)(m . 0 (2)) k"‘ds]

o oo~ 1 C-1 C-—l
- §CU0 [? (x + 3 E(Vils, 0)) -

cE(Wis, ﬂ)]l(s—l—ﬂ)e'm”(s)ds}{

1
&1
J . x(“‘W‘"’”“*"’<ms+a<:c>>’e“"”}

where E(V;ls, 8) is given in (A-9).

For the special case of 2(#) given in the Fig. A-
4, detailed calculation was carried out for E(77/8).
It will not be included in this paper because of
limitation of the amount of pages.

Kuroda :

A(t)

é——— 24 hours ——ﬁi
; b b
a
i

t=0 Ty 27, 3T, 4'1‘0 5T,

Fig. A 4 Periodical Demands Rate Function.

2. Go-When-Fill-Policy
In this case, with the same notation as before, and
using the same theorems in the section 1. we have
the following results.
(1) Vehicle Dispatching Interval Distribution.
- C—1
Frn) <HEEDE T (D)

0<t<Ce(C>1

(2) Expected Value of T.

o @) e~ melt) C-1
E(T/(,):fo AG+ )e(le()n!zo(t))

(3) Average Passenger Waiting Time.
— 1 ¢
EW /) == 3 E(W,|t)
Cis

:%J:{ (04 1)e-mey

CI™ (me())C? _ (my(£))7 ]}

2 Te=D1 G—D1
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