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ANALYTICAL STUDY ON STRESS WAVE PROPAGATION IN
VISCOELASTIC MATERIALS SUBJECTED TO SPIKE PULSE

By Koichi AKAr* and Masayuki HORI**

1. INTRODUCTION

Comprehensive aseismatic design of structures
should take behaviors of ground and the soil-struc-
ture interaction under seismic loading into account.
This requirement has not been satisfied even parti-
ally because of the complexity in the mechanical
properties of soil.

The authors have treated the propagation of stress
wave in soil media as an approach to soil dynamics
In this study the authors have been
so interested in the behavior of ground excited by
the earthquake motion and wished to know what

problems"?,

phenomena would occur at any point in the ground
during the seismic disturbance, that the analytical
method on the wave propagation theory has been
used mainly in proceeding the study.

It is of great importance to investigate the damp-
ing characteristics of soil besides its strength beha-
vior. For theoretical analysis of damping due to
viscosity, it the viscoelastic
damping mechanism®'*. Assuming semi-infinite one-

is usual to assume
dimensional rods of some linear viscoelastic models,
in the present paper, theoretical solutions are obtain-
ed for the stress propagation problems in the case
of boundary stress forming a spike pulse with ex-
ponential decay.

2. PREVIOUS STUDIES

In general, during the propagation process of
stress waves in soil, energy is absorpted by compac-
tion (i.e., intergranular friction) and viscosity of
the soil. In explaining such an energy damping
theoretically, various models are assumed. These
models have been limited to simple ones, however,
because of difficulty in solving the boundary value
problems mathematically.

Seaman® obtained the result from experimental
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data for one-dimensional stress wave in soil that
the constant tan ¢ model (purely viscoelastic dissipa-
tion) gave the best prediction of the wave for clay,
and the viscoelastic compacting model for sand.
The solution for the latter model was the first order
approximation obtained from the elastic solution by
using the correspondence principle. A comparison
of wave propagation results and of theoretical pre-
diction based on compression test properties showed
that the arrival time of the stress wave could be
predicted from the compression modulus of the soil,
and that the stress attenuation could be predicted
from the dissipative soil parameters found in the
compression tests.

The stress and velocity distributions associated
with the propagation of an impulsively applied ve-
locity and stress along rods of viscoelastic materials
were analysed by Morrison® and by Lee and Mor-
rison”. Various viscoelastic materials were consider-
ed from the simple Voigt and Maxwell models up
to a four-element model. The stress distribution
for both cases of constant applied stress and con-
stant applied velocity was represented graphically
for the materials considered by using the Laplace
transform technique.

Berry and Hunter® solved the similar problem for
the one-dimensional finite rod. In this study an
account is given for the propagation of stress in
thin viscoelastic rods when the ends of the rods
satisfy a wide variety of boundary conditions.
General solutions of the equations of motion are
derived by use of the theory of Laplace transfor-
mations and their applicability demonstrated by the
consideration of special problems.

The authors performed some theoretical studies
on the one-dimensional stress propagation problems
in cohesive soils”. Theoretical models considered
were Voigt model, Maxwell model and the standard
linear viscoelastic model with three parameters. For
these models there has not been any analytical solu-
tion except that for a step-pulse type boundary
stress by Morrison et al. The authors obtained a
solution for the latest model by using the principle
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In this method the surface stress
forming a spike pulse of exponentially decaying
type is uniformly divided into ten step-pulse type
stresses, and the solution for each step is finally
superposed with each other.

of superposition.

3. VOIGT MODEL AS A TWO-PARAME-
TER VISCOELASTIC MATERIAL

On beginning the discussion on the stress propa-
gation in viscoelastic materials, we are concerned
with a semi-infinite rod, x>0, of Voigt-type mate-
rial (Fig. 1) where the x-coordinate is measured
along the length of the rod.

Introducing the dimensionless variables,

E=(o E)'*px, c=Eunt, Y =0(x, )]0,

the fundamental equation for stress propagation is
written as :

S =3 T e
where o denotes the density of the unstrained ma-
terial, E the Young’s modulus, 2 the viscous con-
stant, o(x, £) the nominal compressive stress, i.e.,
the force per unit initial cross-sectional area trans-
and the
subscripts represent partial differentiation with re-

mitted across the section x of the rod,

spect to the corresponding variable.
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Voigt model.

Fig. 1

‘We take a spike pulse :
2 (o0, ©)=0, 3'(0, 1) =exp(~—Fr) - (3)
as the boundary conditions, where f=1/ExT, (T,:
relaxation time). For f=0 the surface stress beco-
mes to a step pulse, and f=<o corresponds to a
single pulse.
Considering Laplace transformation :

Lif, r)}__J' e (E, DT roererrerenenns (4)

then, Eq. (2) is reduced to the following ordinary
differential equation.

SzL{Z"}=(1+S)L{Z'}ee ..................... (5)

‘The transformations of the boundary conditions,
Eq. (3), are

L{X' (e, 0} =0, L{Z'O0, D} =——p -(6)

Solving Eq. (5) under the condmon of Eqgs. (6),
we obtain

Akai - Hori :

L{y’e, r)}——+—/—9-e p{x/lfs} ......... (7

as the solution in the transformed field.
Using the integral formula, i.e., if
Z(s)=L{x(¢)} and
s(s)exp{—u (D} =L{K{, v}
then, - (8)

B()Z ()} =L{ j K, u>x<u>du}

we obtain the following final solution in the real
field as the result of inversive transformation.

3(e, r)_.21/ —exp(— ﬂz)f gz, ) 77)

.exp{(ﬁﬂ-l)n—f—ﬁ}d” ......... (9)

where,

oG, n>=ﬁ'”{exp<ﬂ—1>z} ]

.{a(z) —(—Z—)”i},@ ﬁ_t)}dtj (9

n mwm
L@V =Vnt 2—70%

In the special case for #=0 (step pulse) and B=
1, one obtains the following solutions by using ano-
ther type of transformation, respectively.

1) A=0:

(e, z')_ € f 305{2\/77(7"77)}
0

- VaG—n)
.exp<2 ﬂ_z%)d” ............... (10)
2 A=1:
, _ €7 [ cos{24/n(z=m}
(¢ D =— J‘Oli———x/ﬂ(f—-—_ﬂ)
_ sm{Z«/Z(r—ﬂ)} ]exp<2 ’7_2677)‘1”
.............................. (1D

The solution (10) has been deduced by Morrison®
for a step-pulse type boundary stress, and the diffe-
rence from another solution (11) for a spike pulse
with exponential decay is only the term of sin-
{24/7G—m} /7 in parentheses. This means that the
propagating stress attenuates more rapidly for a
spike-pulse shock wave than for a step-pulse one.

Figs. 2 (a),(b) represent the stress solutions in
Egs. (10) and (11), respectively. The former was
obtained by Morrison and the latter has been cal-
culated by the authors, using Simpson’s integrral
formula with the integral intervals of 10~*. For the
numerical calculation FACOM 230-60 Digital Com-
puter in Kyoto University was used. As is seen
from the structural mechanism of Voigt model
(Fig. 1), the instantaneous response to an impact
results in a perfectly rigid behavior ; the wave
front goes through the viscoelastic rod with infinite
velocity. Besides,
depth increases very rapidly with penetration of the

the attenuation time at every



Analytical Study on Stress Wave Propagation in Viscoelastic Materials Subjected to Spike Pulse 103

i .
=0

.10 :
2]

8

¢

%

0

&

5 h

205"

c

@

£

£

o - i 1..* — e é,,"_ e

Dimensionless time T

(a)

’

Dimensionless stress X

Dimensionless time T

(b)
Fig. 2 Response of Voigt model to (a) step pulse and
(b) spike pulse.

wave and there occurs very remarkable collapse of
wave form. One can see a distinct difference on
these characteristics between Voigt model and Max-
well model, both representing linear visco-elastic
behaviors.

In these figures the effect of viscous damping on
the wave propagation does not appear explicitly,
because the abscissa and the parameter indicate the
dimensionless time r and dimensionless distance &,
respectively, defined by Eq. (1). In order to exami-
ne the characteristics, we take the real time ¢ as
the abscissa and the coefficient of viscosity 1/x as
the parameter.

Fig. 3 (a) indicates the pressure change at the
position of =50 cm when a step pulse is applied
to the end of an infinite rod whose characteristics
are explained by Voigt model with its Young’s
modulus E=50kg/cm? and bulk density r=pg=1.65
g/ecm®. The coefficient of viscosity is 1/u=0-—1.0
kgesec/em? : 1/#=0 corresponds to a perfectly elastic
material having no dash pot. In this case the wave
front has a finite velocity and there exists no col-
lapse of wave form, wviz., the step pulse transmits
through the rod with its original shape. When

existing a small amount of 1/#, the theoretical wave

velocity becomes infinite due to the mechanism of

Voigt material. In actual, however, there appears
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Fig. 3 Variation in wave form with viscoelastic constants
in Voigt model under (a) step pulse and (b) spike
pulse.

finite velocity for small value of 1/u. It takes much
time, on the other hand, for the wave to reach
peak stress when the value of 1/u increases.

Fig. 3 (b) is drawn for the spike-pulse type
boundary stress similarly to Fig. 3 (a). In this
figure we take the constant value of E #=100sec™!,
and the stress form at x=50cm is shown for the
combination of E and 1/#. From this figure it can
be seen that the smaller the rheological constants
(E, 1/#) are, the flatter the stress wave becomes.
The identical values of rheological constants in
Figs. 3 (a) and (b) are E=50kg/em?® and 1/x=0.5
kgssec/em?. As is known from comparison of cur-
ves in both figures, the stress wave propagating
through material attenuates very rapidly in the case
of boundary spike pulse which decays exponentially
with time as already mentioned.

We turn our attention to the problem of response
behavior of the dash pot in Voigt model. Investi-
gating the coefficient of viscosity, 1/#, the material
can be considered as rigid body for 1/#-—eo, and
the input energy propagates with finite velocity in
the direction of rod length; there is no energy dis-
If we take
another extreme case of 1/¢—0, then the rate of
strain ¢; becomes infinite so that the energy is

sipation in the propagation process.
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absorpted completely, thus there exists no energy
propagation to the direction of rod length. In the
latter case the absorpted energy propagates in the
direction of time.

From the structural mechanism of Voigt meterial,
it is recognized that for smaller value of 1/z the
stresses are transmitted mainly by the spring E; the
energy absorption is small and the collapse of wave
is not remarkable. For large value of 1/¢, on the
other hand, the stresses are transmitted mainly
through the dash pot.
energy absorption is still small because of the large
viscosity ; the stress propagation approaches the
form of rigid meterial. Thus, the rate of propagat-
ing stress subjected to the spring and the dash pot
varies due to the relative magnitude of them, and
the value of 1/x at which the energy absorption
becomes maximum is determined corresponding to
a certain value of E.

In this case, however, the

4. SPRING-VOIGT MODEL AS A THREE-
PARAMETER VISCOELASTIC MATE-
RIAL

As described above it is impossible theoretically
to explain the finite velocity in a medium and to
express the acute rise of stress at the instance of
arrival of the wave front, as long as we are concern-
ed with Voigt model. Such a phenomenon can be
explained generally by a rheological model in which
Using the simplest Max-
well model (Fig. 4), however, the wave attenuation

— N —{F—
E 1w

Fig. 4 Maxwell model.

a spring is put in series.

is so rapid that the duration of wave motion cannot
be expressed. Then, a three-parameter viscoelastic
model is introduced to simulate characteristics that
there occurs a discontinuous jump of stress in the
neighbourhood of the surface of medium subjected
to an impulsive loading and also to indicate the
collapse of wave form behind the wave front.

We attempt to choose two kinds of true three-
parameter linear viscoelastic model which express a
finite wave velocity in general. One is the standard
linear viscoelastic model shown in Fig. 5 (a) and
the other is the spring-Voigt model in Fig. 5 (b).
These models both consist of two springs and a
dash pot, the constitutive equations being expressed
as follows s

(a) Standard linear viscoelastic model

%+ua:e,(l+k}+1§ﬂ5 ..................... 12)

Akai - Hori :

Fig. 5 Three-parameter viscoelastic models; (a) standard
linear viscoelastic model and (b) spring-Voigt
model.

(b) Spring-Voigt model

1 pocnd Gt .....................
E5+,ue'—a(1+k)+E’/z (13)
where % is designated as
E
sz. ............................................. (14)

Distinguishing both rheological constants by the
subscripts a and b, above two models become iden-
tical by Morrison®, provided the following correla-
tion holds :

E, Ey E,
E, EJ Nw TES

For the standard linear viscoelastic model defined
by Eq. (12) Morrison® solved the wave propagation
behavior under a step pulse, and the authors present-
ed the response solution for a spike pulse (#=1)
and £2=1". For the spring-Voigt model expressed
by Eq. (13), on the other hand, the fundamental
differential equation is written as follows, in terms
of dimensionless parameter defined in Eq. (1).

o' + 3 =R I R Yo e (16)

Thus we obtain the following solution in the
transformed field under the boundary condition Eq.
(3) (Eq. (6) in transformed form).

L{Z'(, DY =g exp{-— sy fj;%if}

............... (15)

The solution in the real field by Laplace inversion
theorem is :

, N 1 r+ico ] o
2 0= 2% L-imme
-exp{ _Swkstk+] E}ds ......... (18)

s+l
The integrand in Eq. (18) has a simple pole at s=
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—# and two branch points at s=—1 and s=—(k+
1)/k. To evaluate this integral we complete the
path of integration ABCDA as shown in Fig. 6,
where ultimately the radii of two large circular
quadrants tend to become infinite and the radii of
the small circles tend to zero.

Following identical equation is defined :

1 _ sAkstE+1 } .....
I_js+ﬂe exp{ —_——«/ETI &rds 19
(1) In the case of ,3>—k—_i:—1-

Since the simple pole s=-—4# is outside the con-
tour, we have, by Cauchy’s theorem,

§;=1AB+IBc+ICD+IDA=0 .................. (20)
so that,
Iap=—1Igc—Icp—Ipa---eeereeveerenverenns @n
Provided
R % 5 | JE O, 22)

then, by Jordan’s lemma'”, the integrals around
the two circular arcs tend to zero as the radii of
the circles tend to infinity, viz., (Igc+Ipa) approa-

ches zero. Thus, from Eq. (21), we are left with
the equation
Tap==—1Icp +oeererrrrermemreciirieneneciseienen, 23)

It is necessary to break up the integral from C to
D into several parts, namely, the contours C, and
C,, C, and C,, the circles 7, and 7,.
1) Integral around the simple pole s+£=0:
For the integrals around the simple pole s+A=0
we write s+B8=we', |0]<<z, and substitute it into
Eq. (19), which yields the result

I=—2z ie—ﬁrexp{ﬁwg} ...... ©@4)

VB—1
2) Integral along C, and C,:
We write
st (ks+k+1)
2————-——_— oooooooooooooooooooooooo
{g()})= STl (25)
which is schematically illustrated in Fig. 7. From

{g(s)}2

Fig. 7 Functional form of ¢(s).

this figure, since ¢(s) is a single-valued function
along C, and C,, the sum contribution from these
two paths is zero. That is,
To,4+-c,=0 eoveevemresieinieieisecieiens (26)
3) Integral around the circle 7, :

For the integral around the circle 7, enclosing

kel =0, we write s+ kel =
k ’ k

o e’?, and substitute it into Eq.(19), then it can be

shown that
. " k+1
I,,:Ll’x:}) ﬂexp{—- % r}
T it
-exp{k+1 VEoeé E}-—(ﬂf—d(i:O
B

k 1 k+1 _k+1
Tk £

the branch point s--

4) Integral around the circle 7,:

For the integral around the circle 7, enclosing
the branch point s+1=0, we write s+1=0 ¢, and
substitute it into Eq. (19), then it becomes

4 1 w ie'?
17225;13;[1 +0(O))]J_”e“’eXp{“/a)eug.ig}’——"ﬂ_1 dé
271
F-1

5) Integral along C, and C;:

Finally along C, and C, we put s+1=ge’" and
s+1=ge~’*, respectively, to obtain the contribution,

I I 9 1/k 1
c2tAcy= JO q+1——/9

.sin{_@i}ﬂé—l—_—kgf}dq ......... (29
Vg

From Egs. (18), (23), (24), (26), (27), (28) and
(29) we obtain the final solution as follows:

N 0 2/ 7 2 =51 }_ 1
2, )=e exp{ = & 51
.l. l/k____,._.l_..___ —(g+1) T

“7)o gr1-5°¢
-sin{ g+ 12/%1—/“7 E}dq ...... (30)
k+1

k
Instead of Eq. (24), having the following contri-

L OO (28)

e—(a+n7T

2 ,—T
&%e

(2) In the case of >p>1
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bution,

I/g:-—-Z T ie”‘srcos{ﬂ%_]i_:lk—ﬂf} ...... (3L)

we obtain the solution

’ e [ BNVETI—RB }_ 1
S/(E, v)=e cos{ x/m I3 71

_lj’”‘_l__e—mm
zjo g+1—F

-sin{ Sgill*ﬂ_—@—g}dq ....... 32)
Ve

£

(3) In the case of =1

Substituting A=1 into Eq. (19), it reduces to
{1 . _ syks+k+1 }
I—Js—l-le exp{ i Erds ---(33)

S+
In this case the simple pole lies on the branch po-
int s+1=0. It is necessary to determine the residue
of the integrand in Eq. (33) at s=—1 in order to
know the contribution around the simple pole. It
that the residue equals

is self-evident, however,
unity. The contributions on the remaining contour
are obtained by the same way as that in the case
(1) or (2). Therefore we obtain the solution

1/k
(e, T)=1__1_J ,l_e—(q+m
zJo ¢q

vq
(4) In the case of 0<8<<1
Since the simple pole s=—4 is inside the contour
ABCDA as shown in Fig. 8, we have by Cauchy’s
theorem,

§=IAB+IBc+ICD+ICD=27L’i ------------ (35)
so that,

Iap=2ni—Tgc—Icp—1Ipa -w-ersrereeeernes (36)
By Jordan’s lemma we have

Tpo+Ipam0eeeeraeerncnincsinininninin 37D
Substituting Eq. (37) into Eq. (36), it reduces to

Tap=2mi—Igp +weeeerreererenrecossnemsinsinns (38)

l . B
C C1Y‘ Ca Y2 -8

[

A

Fig. 8 Integral contour with the simple pole inside.
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By the same way as the case (1) or (2), we have

Iep=2Tie “’+2ijl/k——1

eoEFITCe 0o g+1-4

-sin{wf}dq ............ (39)
vy

and the solution

P T P e & L S
’ B—1 z)o q+1-4

vaq

The condition Eq. (22) to satisfy Jordan’s lemma
is one in the range Re(s)<<0. If we consider a con-
tour in the range Re(s)>0, however, the condition
to satisfy Jordan’s lemma is

T A/F GO sererseeneeseniiii s (41)
Since we have no singular point in the range Re(s)
>0, the integfal I along the contour is always
zero. That is, the range repsesented by Eq. (41)
is a part in which the wave does not arrive. Also,
the boundary between two ranges, .., v— k&0
and t— /% £<<0, represents the wave front.

We have the reduction, by using the original
constants, E, E' and #, and variables, ¢ and z,
standing for the dimensionless variables r and &,

r=WEE
ie, Epn t=\/%(p EY'*uzx

% - \/ :6,_7_ .......................................... (42)

This indicates nothing but the velocity of wave
front.

e (DT

5. CONSIDERATION AND DISCUSSION
ON CALCULATED RESULTS

The numerical calculations are performed with an
aim to determine the collapse of the wave form in
the spring-Voigt model, i.e., attenuation of peak
stress and increase in rise time, and to compare
them with the experimental results in this study.

First we take the simple Voigt model (Fig. 1)

0= Goexp(~1501) t:sec
{ y=1.70g/cm?
E =150 kg/em?

N

" , experimental

]

& ya /1/P-=5.0 kg-sec/cm?

0 N

ﬁ ; ., 1.0

€05}

Q

2 l

E’ H

€

a L T

e -

0 50 100 150

Depth c¢cm

Fig. 8 Comparison of experimental with theoretical
results (Voigt model).
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described in 3. for which the solution of propagat-
ing stress wave is given by Egs. (9) and (9)’. Cal-
culated results for some variation in the coefficient
of viscosity 1/z are shown in Fig. 9, which is com-
puted under the following conditions : the surface
load o6=0,exp(—150#) (¢:sec), the bulk density r
=pg=1.70 g/cm®, Young’s modulus E=150 kg/cm?.
Experimental results for sandy loam by the shock
tube test described elsewhere'V are plotted in this
figure. According to this results, the fitting of the
rheological E=150kg/cm® and 1/p=
5.0kg.sec/cm? satisfactorily explains the stress at-
tenuation behavior until the distance £z=60cm. For

constants,

larger distance the attenuation obtained in experi-
ment is rather larger than that expected by theore-
tical calculation.

As an example of numerical calculations for the
spring-Voigt model (Fig. 5(b)), we choose here the
decaying parameter #=5. The calculations are car-
ried out with the Young’s modulus ratio 2 in the
range of 0.5 to 3.5. Such values of parameters g
and % are roughly predicted from the experimental
results on the stress propagation in soil using the
shock tube technique. The calculated results using
FACOM 230-60 Digital Computer are given in Fig.
10, showing the attenuation of peak stress. There
seems no variation in rise time, wviz., there is a

5

W= = O

R XX XX
A
momono Ul

Dimensioniess stress
o
o
d

0 o1 702 03 0L 05 06 07 08
Dimensionless depth 14

Fig. 10 Calculated results for attenuation of peak stress
in spring-Voigt model ($=5.0).

0= 0, exp(-1401) t:Sec
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@ k=05 EN=28.0 sec
4
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L
s .
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o i
: I s
0 50 100 150
Depth cm

Fig. 11 Comparison of experimental with theoretical

results (spring-Voigt model).

shock front even when the wave proceeds into great-
er depth and the peak stress occurs at the wave
front. Furthermore, the wave form at the boundary
surface almost does not collapse as the wave goes
down. From this figure one can see that the at-
tenuation along the dimensionless depth & increases
with increase in the parameter .. The increase in
k implies the decrease in Young’s modulus E’ of
the free spring with respect to another spring E in
the spring-Voigt model.
can be understood by taking the fact into account,
therefore, that Voigt behavior mainly appears with
increase in the parameter %.

The above phenomenon

Now we compare our results of analysis with the
experimental attenuation of stress. Since the velocity
of stress wave in the spring-Voigt model is given
by +/E’Jo, we regard E’ as the confined modulus
computed by o c? (o : density, c: celerity) in order
to fit the theoretical result to the experimental
velocity. E'=6x10%g/cm? for the
bulk density r=1.70 g/em®. Furthermore, we use
a typical value of the decaying parameter a¢=140
sec™ taking the fact into consideration that the
attenuation does not depend on the applied
The calculated results for g=5.0
are indicated in Fig. 11, in which the corresponding

We choose

pressure level.

attenuation in experiments is also represented. From
this figure one can see that the theoretical results
for a given Young’s modulus and bulk density do
not vary regardless of £ and #, and that the theore-
tical solutions for £=0.5—1.0 very well express the
experimental results.

From this consideration we reach some important
conclusion. That is, the use of the spring-Voigt
model to soil subjected to an impulsive disturbance
gives us better prediction of one-dimensional stress
propagation. It comes from two viewpoints; one is
that there exists little variation in rise time in both
experimental and theoretical results, namely, the
wave form at the boundary surface does not collapse
as the wave goes down, and the other is that the
stress attenuation predicted by the theory well coin-
It is also noted
that the attenuation in the spring-Voigt model de-

cides with the experimental one.

pends on the product of E and # as well as E’, but
not E and #, individually.

§. CONCLUSION

In the present study, in order to obtain the analy-
tical solution to stress propagation problems in the
ground in which the damping effect of soil is con-
sidered, the one-dimensional response of cohesive
soil subjected to an impulsive stress of spike pulse:
with exponential decay is calculated, and the adapta-
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bility of the theory is investigated through the ex-
perimental data. The main conclusions obtained are
summarized as follows :

(1) The stress propagation in Voigt material
subjected to an impulse of step pulse or spike pulse
at its end can be calculated analytically by using
the Laplace transform technique.
attenuation behaviors with respect to the type of
impulse, the stress wave propagating through mate-
rial attenuates very rapidly in the case of boundary
spike pulse which decays exponentially with time.

(2) In Voigt material the instantaneous response
to an impact results in a perfectly rigid behavior.
The duration time at every depth increases very
rapidly with penetration of the wave, on the other
hand, and there occurs very remarkable collapse of
wave form. The rate of propagating stress subject-
ed to the spring E and the dash pot 1/# varies due
to the relative magnitude of them, and the value of
1/« at which the energy absorption is maximum is
determined corresponding to a certain value of E.

(3) Three-parameter viscoelastic models are in-
troduced to simulate characteristics that there occurs
a discontinuous jump of stress in the neighbourhood
of the surface of medium subjected to an impulsive
loading and also indicates the collapse of wave form
behind the wave front. These are the standard
linear viscoelastic model and the spring-Voigt mo-
del, and for the latter, the analytical solutions are

Comparing the

presented using the inversive Laplace transformation
with the mean of contour integral. These results
are compared with experimental data, and the dis-
cussion indicates that the analytical solution satis-
factorily explains the attenuation behavior of confi-
ned soils.

The authors are greatly indebted to Mr. T. Shi-

Akai - Hori :

mogami, graduate student in Kyoto University, in
performing numerical calculations for Voigt-type
material.
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