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ELASTO-PLASTIC ANALYSIS OF STEEL STRUCTURES
CONSIDERING THE EFFECTS OF RESIDUAL STRESS
AND FINITE DEFORMATION

By Toshiaki OHTA* and Tokuya YAMASAKI**

ABSTRACT

A general beam theory is developed capable of
treating elasto-plastic bending behavior of steel
structures subjected to (a) incrementary load and
(b) repeated load combined with axial load; Atte-
ntion is focused on the evaluation of the effects of
residual stress and finite deformation.

Extended complementary energy method is emp-
loyed throughout the analysis and numerical results
are presented for stress, curvature and deflection of
steel members with rectangular and I-sections of
the structures.

Problems of plastic stability are also considered
theoretically from the same energy viewpoint.

1. INTRODUCTION

The classical approach?:2:3:9:% tg the evaluation
of inelastic behavior of steel member is generally
based on the moment-curvature equation.

In this case, however, when a steel member having
residual stress is subjected to variable cyclic load
combined with axial load, serious difficulty is enco-
untered in formulating exact representations® for
the inelastic behavior. For clarity, function of the
moment-curvature equation changes extremely its
form under the above mentioned load condition,
and the analytical procedure due to such function
can thus be much complicated.

The resolution of the foregoing difficulty may be
given by using the extended complementary energy
method of continuum mechanics together with the
generalized moment-curvature formula which will
be derived in this paper by the authors.

This can be accomplished by estimating directly
the stress-strain relation for the given loads based
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on the numerical integration technique®:”+®:9 and
trial and error method.

As a result, the cumbersome but otherwise rigor-
ous solution of the elasto-plastic beam theory is
replaced herein by much simpler generalized one
with sufficient engineering accuracy. And the ine-
lastic bending problems for steel structures with
residual stress, subjected to combined loads such as
combined bending moment and axial force, are
solved by the numerical analysis and results are
presented for the stress, the moment-curvature
relation, the deflection and so on.

It is also shown that the elasto-plastic finite de-
formations of structures can be easily analyzed by
the extended complementary energy method®.

Furthermore, in this investigation, problems of
plastic stability, usually accompanied with the bend-
ing problems above mentioned, are considered by
using matrix analysis from the same energy view-
point.

2. ASSUMPTIONS

The method considered herein makes the following
assumptions.

Fig. 1

Stress-Strain Diagram.

1) The stress-strain history curve for steel is
idealized as shown in Fig. 1.

2) The plane sections of the member remain
plane during bending.

3) The member is of uniform section.
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4) The member is subjected to bending moment
and axial force.
5) Effect of shearing stress is neglected.
6) Possibility of local buckling is disregarded.
The coordinate systems are as follows: The coo-
dinate x is parallel to the axis of the member and
y is perpendiculer to the neutral plane.

3. ELASTO-PLASTIC BENDING

(1) Strees-Strain Relation

Denoting normal stress and strain in x direction
by ¢ and ¢, respectively, the stress-strain relation
for the steel, as shown in Fig. 1, is generally ex-
pressed by the following non-dimensional from.

F=v(F —F%)

where d=0/0,, F=¢fc,, F*=c¥/c,

ay : vield stress of steel,
¢, : yield strain of steel.

Table 1 Values of 04, ¢4, 05y, &y and Di.

aay=5ay'“€a'+ﬂa/ ca=t4 Eay=tqy ep=ep’ epy=¢py
Step 1

0g=0g" 0p=0p’ opy=0py’ D;=Dy;

ep=c epy=ep'—2¢y eg=cpy op=1Fo(ep—¢tay’) +0ay’
Step 2 -

fay=¢tay’ 0a=04' Oay=0ay’ Di=1

Oby=0by' —Ep'+0b’ a=¢a" tay=tay' co=¢b" by=¢by’
Step 3

o0g=0,' aay=‘7ay' ap=0p’ Di=Dy’

sg=c egy=t4 +2¢, ep=¢ay 0g=tmFo(ca—¢py')+05y
Step 4

epy==cpy’ op=0p' 0py=0py Di=—1

Because the procedure is pregrammed for an
electronic computer such that the initial values of
€a» €ay» ** Opy are given by Eq. (2), the values of
v, ¢* and ¢,, &4y, +--for the given load are taken as
follows;

If ¢,<Ce<leyy and D;=—1 then v=1, e¥=¢,—0,/E,
and ¢,, €4y, ---are defined as shown at rank of Step
1 (loading at the elastic state) in Table 1.

If e>e¢; then v=yp,, ¥=c,y—0,,/8.E, and ¢4, g4y,
...are defined as shown at rank of Step 2 (loading
at the elasto-plastic state).

If epy<<e<<ep and D;=1 then v=1, e*=¢;—0)/E,
and ¢,, €4y, ---are defined at rank of Step 3 (unloa-
ding elastic state).

If eCe, then v=yp,, ¥=ep,—0py/00E, and &4, egy,
...are defined at rank of Step 4 (unloading at the
elasto-plastic state).

In Table 1, values of ¢/, D’; are the
ones of ¢4, €4y,°-D;, at the former load-step, respe-
ctively.

1
& ays *°*

Ohta « Yamasak. :

While, the initial values of ¢,, ¢,y, ---are given
as.

0,=0py=—0,—0,, 0=04,=0y—0p, D,~=—1,}
SgTREpy T by — &y, EpTEGyTHEY—Ey,
........................... cerrrenneennnnn(2)
where o,, ¢, : residual stress and strain, respectively,

(9ays €ay)s (0, €8), (Oby, €8y), (94, €4) : stresses
and strains at the points A, B, C and D in Fig. 1,
respectively.

Consider the member section shown in Fig. 2;
Relationships between strains and therefore stresses
at the various depth of & (=1, 2---) can be deri-
ved from the geometry of strain distribution.

Fig. 2 Strain-Distribution Diagram for
Rectangular Section.

s=La-g0 3 1] G=L, 2, ) en(®)

where yk=yk/h’ EI:"EI/E}U e-u=5u/ey,
&g @ strain at level &,
&4, €7 - upper and lower extreme fiber strains,
respectively,
g : depth of level &,
h : depth of cross section.
From Egs. (1) and (3), stress at level % of the
member is expressed as follows;

Fe=[ve(1—-53p) Vk?k][z:::l-l/kgk* """""" (4)

(2, General Formula for the Moment-
Curvature Relations

For equilibrium, external forces must equall to
internal forces.
Therefore,

[0 ] e
1 —ah]l N . —fvydAo
where M : external bending moment,
N : external axial force,
dA, : elementary area of cross section,
a,h : depth of centroid. of cross section.
Substituting Eq. (4) into Eq. (5) and replacing
M, N by M (=M/M,), N (=NIN,), Eq. (6) will
become

[} 7]



Elasto-Plastic Analysis of Steel Structures Considering the Effects of Residual Stress and Finite Deformation

dAo f” 3 dA,

Jy(l » A, &

= _._dA _dA [ ]
doJu(I—y)y—Zf aoJ’vyz A°°

JUE* dglo"

MOJV ye&* djfo

0
where M,=EJI¢, : yield moment, N,=0,4,,
ay=N,h/M,,
A, : cross sectional area,
E, : modulus of elasticity,
I: moment of inertia of cross section,
é, : yield curvature.
On the other hand, curvature ¢ and strain &° at
the centroid of cross section are given as follows

(See Fig. 2);

[ _[90 ][ @ —][e] ..
-go]—l:so/fyi'—l:l_“x @ ][Eu:| e

From Egs. (6) and (7), we find the required
equation as,
r"(f Py F M G1
1[5 B[ 6] o .
where
M Fu Fzz:! [ -2 _dz:}[ :|_1|:0 1
= DO
L Fo Fop l—ca;, @ 1 —a,
- JV A=-3) ~—— dA° J'V 5—‘“‘{?0
Dy |= 0
L °] dA,

A
aofu(l—y)y—gf— aOJ'vy A,
(G [ e —a —t
_Gz:l—l:l"“x a :I[DO] [Eo]

J . dA
- vE y -
- c | e

da, | “= e,

‘oco J VE*y a,
a) Rectangular Section
Let consider a rectangular section shown in Fig.
3 as the first example, elements D;; and E;;(i, j=
1,2) of matrices [D,] and [E,) in question are
obtained by using so called Trapezoidal formula as,

Rl — b

[ s
41

Fig. 3 Stress-Distribution Diagram for
Rectangular Section.

- M
Du=4k 3 (4=30) +ran (1= Furd 2,

- Nl
Dy,=4 hk21 rFetvenTeall2,
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D,,=a,4 Eé;{@ Fe+d B L—Fp) v
+ B Fe+24B) A= Frs)vesi} /6,
D,,=a,d i’zé'l{(s Fe+r4B) Favp
+ @ Fe+24 h) Frirven}6,
E,=4k g" {Vefp* +venfre*}H2

En=adh 2 {B Fr+dRyve*

+(3 yk+2 AR)VpssE k+1*}/6
where 4 h=4 h'h,

_'1

7

S \—:};
i .‘.'ﬁ
bt — 4 __l

Ort=~0r= 07 ~

Fig. 4 Residual Stress-Distribution Diagram
for Rectangular Section.
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Fig. 5 Moment-Curvature Relation for Rectangular
Section under Incrementary Loading.
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Fig. 6 Moment-Curvature Relation for Rectangular
Section under Cycric Loading.
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Fig. 7 I-Section.

4 h:length of the divided element.

From the above result, moment-curvature relations
are obtained for the rectangular section? with
residual stress of Fig. 4 by running computer pro-
gram with 4h=h/10, ¢,y=—0,,=0.30,, 0,=2100
kg/em?, E,=2.1x10°kg/cm?, #,=0.005 and N ha-
ving the values 0 and 0.3, respectively, and plotted
in Fig. 5.

On the other hand, moment-curvature hysteresis
curve of the same section can be given as in Fig.
6 under cyclic bending combined with axial force
N=0.1.

b) I-Section

A wide-flange I-section shown in Fig. 7 is consi-
dered as the second illustrative example.

In this case, the elements D;; and E;; are

D,=w4 h[;‘;”l (eI =38 +vpas A=Fps)}
+2¢4 b{kg&l (Var+vers1)
+k,1\22137,(uk' +Vk'+1)}/w 4 h]/Z A,,

Dy,=wd h‘::éi CrFe+ Ve Ters)
+2t 4 b{kglyz(ykl+yk,+l)
+klﬂély,(w+uk/+l)}/w 4 h]/z A,

Nz -
D=l 3 4@ 5at 4B A=5)
Frrn@Iu k2 4B (1= 5pe)
Ny
+624 b{kzlylyz(Vk'+Vk’+l)

N,
+k,21y,;vz<uk/+uk,+l)}/w 4 h]/G A

N, ~
Du=awd ] ¥ (4@ 5ura B3y
e B Fe+2 4 R) Fpn}
N,
+6 t 4 b{kglj'lz(l/k/ +Vk/+l)

N,
+klz'lyzz(Vk’+Vk'+l)}/w 4 h]/6 A,,

N,
E,=w4 h[k21 {VeEp* -+ vpsnfpa®}

Ohta +» Yamasaki :

Nl
+2¢4 b{ 3 (et Hvpr iy E gt ®)
K=l
N,
+k/z'l(Vk'§k'+1*+Vlz’+15-k’+l*)}/

'wAh:l/ZAo,

NZ -
E,=wd hl:kZ'l {vr(BF+dh)ep*
01 B Fo+2 4 BT iy}

N,
+6¢t4d b{k,z,'lyz(uk,Ek,*+Vk:+1Ek:+1*)

N,
+k/2'1§1 (Vk'?k'+vk'+1€'k'+1*)}/

wAh]/GAo,

where w : width of web,
¥, ¥, ¢ depth of the centroid of lower and

upper flanges, respectively,

Mg,
I~ E
5
N
S
< ~
~L ¥ UGt ewh 2wt J07 !

Vi fim§ | =10, ie550”

Fig. 8 Residual Stress-Distribution Diagram
for I-Section.
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Fig. 9 Moment-Curvature Relation for I-Section
(Strong Axis) under Incrementary Loa-
ding.
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h : depth of cross section,
¢ : thickness of flange,
b : width of flange,
4b : elemental length of b,
4 h : elemental length of A,
A, : total cross-sectional area,
%' : number of element in flange, used as
suffix,
%k : number of element in web, used
as suffix.

From the result obtained above, the moment-cur-
vature relation for I-section® of Fig. 8, named 8
WF Section (0,=2812kgfcm?, E,=2.1x10° kgfem?),
will be obtained as in Fig. 9.

Good agreement is obtained between the result
of this method and rigorous solution?.

(3) Complementary Energy Method

Consider a steel member AB subjected to axial
force N and bending moment M, the complemen-
tary energy dU¥* stored in the infinitesimal element
dS of the member AB will be given® from Fig.
10, as

. e

(I

M+dM
7\ Frd i
o=

d-‘([, o

Fig. 10 Deformed Element of Member AB.

dM

dU*:{J¢(1+e°)dM+je°dN—0——c—l,§

+ (N—H)}dS

6 : chord slope of the element,
H : horizontal force.

Then, the total complementary energy of the
member AB is

U*=”¢<1+eo>deS+f j S dNdS

where

dM
—JﬁWdS—kJ(N—H)dS ......... (9)

For the small deformation theory, Eq. (9) yields by
dropping the secondary effects of the deformation.

U*=,”¢ d MdS+J,[EOdeS ............... 10

For the convenience of the analytical procedure,
a sufficient number of cuts have been introduced
hereupon in such a manner as to isolate each ele-
ment from other elements, and the complementary
energy of the member AB is expressed as the sum
of the complementary energies of its individual
elements.

Therefore,
2
U*=Z'jf ¢ (1+¢,;,°YdMdS

iJosM;
2 , 3 f aM;

+§MM6 anas-3[ 0,84 as
2

+%’J1)(N,-——H,-)d5 ..................... an

2 ¢ length of element,

j : number of element, used as suffix.
On the other hand, the compatibility condtions

for the i th element can be written using the com-

where

plementary minimum principle® as
o U*

M;

which is transformed into

2 o an
§|:j0{¢j(1+e, ) 73 }dS

1 2 M —M; _
~[ o (P fas ]

A
=i g {28:00 e

or

1
+ 5 (Bitdin0) 2+e+einy”)

1
-+ 5 (@;+0i1) (2+fin+5i+1o)}=0

(4) Elasto-Plastic Slope-Deflection Equation

An elasto-plastic slope-deflection equation of steel
member subjected to bending moment and axial
force such as shown in Fig. 11 is derived herein,
for the convenience of the indeterminate structural

analysis.
[; 7N 2 3 oAby on o
He \A‘ i !
i
Qi " !
1
,{\MBA
L Y] B} J/ Ha
‘ G
i
Fig. 11 Steel Member AB Subjected to End

Forces Myp, Hap, Qap at End A
and Mps, Hps, Qpa at End B,
Respectively.

Dividing the member AB into n elements, we
can get moment M; and axial force N; at the divi-
ded point ¢ as follows;

Mi=fiMAB+giMBA+v£°HAB+Mi°,}
N;i=Qapsin 0;—H 45 cos 0;

where fi=l—w;ftyer, ¢i=—ilttyn,
0
V"=V~ Uy ai[Up s,

i-1
ui=21 2’1 (L+¢€;% cos b,
j=
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i-1
vi= 2 Z‘l (1+e€;”) sin b,
i=

Qupg=—Map+Mpa+vuap) 4y,
M : moment of point { due to applied
loads,
Map, Mpa:end moments at ends A, B,
respectively.
From the complementary minimum principle,
rotation angles @4, @p at ends A and B are given
by using Eq. (11) as

_aux (B " OM

6,—R= 7 Map —J.A¢(l+e) Man das
_aUx (B w OM

”B—R—'TM”;;—L“”” 2.

where R : revolution angle of member AB.
Substituting Eq. (15) into Eq. (16) and replacing
¢ by ¢2+M/E,I, we get the following equation.
EoK(oA"R)=a1MAB+b1MBA+C11} (17
E,K(@p—R)=a,Mps+b,Map+C,
where

a1=ﬁf2(1+e°)d5/l,
b,=bz=ﬁfg(1+e°)d3/1,

a2=ﬁg2(1+e°)d5/z, $?=¢~M|E,I,

K=1I/l, $?=¢2/¢,,

C=M, J j ST+ H 5070+ $2) L+ dS],
=1, ry=IN,/M,,
c2=Myﬁg<1\70+ma-w-ro+w><1+e°>dS/l

Hap=Hugp/N,, M°=M[M,
Thus, the required equation can be obtained by
solving Eq. (17)
Map=EK(¢ap0a+Bap0p+r1aR)+ CAB,}
Mpa=EK(fpaOa+dpabp+rpaR)+Cpa

GAB= —a,/a;, dpa=—a,/a,,
Bap=Bpa=blas, a;=b’—a,a,,
Cap=(ac,—b,c;)]as, Cpa=(a,c,—byc,)/a;

Eq. (18) is transformed into non-dimensional
form as

— 1 —
M ap=-—(24p0a+Pa80p+748R)+C4p

where

_ 1 ~
Mpa=— (Bpaba+dpabp+ raR)+Cpa

where C=C/M,, o=M,/E,K=¢,]
(5) Ilustrative Examples

a) Example-1

To illustrate this method it is applied to a canti-
lever AB subjected to vertical and horizontal conce-
ntrated loads at free end B.

If the cantilever is divided into 10 elements as

Ohta - Yamasaki :

—_—
4.2

_
3 ¢ 5 6 7 8 9 o U

A

o

|

e b,
B

Fig. 12 Cantilever AB Subjected to Concentrated
Loads H,, P,.

shown in Fig. 12, equilibrium conditions will be
given as follows;
Qi1 =P, cos 0;+ H,sin 8;,
N =P,sin 8;~H, cos b;,
M =M;+Q;(1+¢2, (i=1~10)
where 0,=—2{¢,(1+¢,%)
+ (b +82) (2+¢,°+€,°/2}/6,
P, : vertical concentrated load,
H, : horizontal concentrated load,
Q : shearing force,
2=1/10, I : span length,

From Eq. (20), unknown quantities M;, N; and
Q; will be evaluated by using trial and error me-
thod, where 6;, ¢; and ¢;° can be determined by
Egs. (14) and (8).

With these quantities M;, N; and @; known,
vertical displacement dp at the end B can be calcu-
lated by using complementary minimum principle
as follows;

- (20)

aU*
Sp= Gp, T 1)
which yields, by utilizing Simpson’s formula, as
2 5 4
o= g (it 4,5 12 3 ) (22
= =
where

10
1= e {8 3 (ores? cos
J=1

+sin 8;—6; cos 0,’}

2,,=0
From the preceding investigation, relationships
between applied load P, and deflection 6z can be

[BL
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05 o
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0005 0.01 0015

Fig. 13 Deflection Curve of the Cantilever AB
with Rectangular Section under Incre-
mentary Loading.
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|

———— STl defernalion theory

e fiil e formalion theory | ——y
(Gn03, B0, )

Fig. 14 Deflection Curve of the Cantilever AB
with Rectangular Section under Cycric
Loading.

obtained for the beam with rectangular cross secti-
on? by running computer program with 4 A=A/10,
h=20.47cm, b=2.8lcm, 0,=2100kg/cm?, E,=2.1
x 108 kgfem?, #,=0.005, I=10 %, 5,=0.3 and H, (=
Hy/N,) having the value 0 and 0.3, respectively,

]PETE
] 50
]
10 /
08 @/
44
0 0005 0.0] 00i5

Fig. 15 Deflection Curve of the Cantilever AB
with I-Section (Strong Axis) under In-
crementary Loading.

O M=05 @ M-07 M09 WwWHA-11

0365 07 :
0¥

o —_—

A 2] FA A
0’7‘/74 o e A oms H os
1080 1208 1364 o

Fig. 18 Stress-Distribution Diagram for I-Section
(N=-0,3, 5,=0.3).

w{?’BA (% wH,y+ jll'l’sHAB"‘C—AB'—CBC) _TAB(CBA+C-BC>}

and are plotted in Fig. 13,

Comparison is made between the results of this

solution and the solution given by the small defor-

[mation theory. And it is found that the bending
rigidity of the beam under axial force decreases
considerably by the secondary effect of the finite
deformation (See Figs. 13, 14).

It is also recognized that the iteration procedure
converges rapidly if initial values of the unknowns
are chosen properly, and that the problem of obta-
ining suitably initial values of the unknowns is
conveniently resolved by using the incremental load
method.

Fig. 15 also shows curve for the I-section of Fig.
8.

While, the stress-distribution diagrams for the
given load become as shown in Fig. 16.

b) Example-2

oy E
- o 3 KB 178
(Y
o~
(=1
~
<+
o
L\¥]
IR Y D

—pgn—

Fig. 17 Rectangular Frame Subjected
Concentrated Loads H,, P,.

A structure of Fig. 17 is taken herein as the
second example.

End moments M4p, Mpa, Mpgc can be expressed
from the given structural and load coditions as fol-
lows;

_ 1 _
M ap=—~(Bapbp+7148R)+Cap
_ 1 -

Mpa=—-(dpabs +7gaR)+Cpa 5 - (23)

— 1 ~
Mpec= > (apclp+ABpclr) +C e

Moment equilibriun condition at joint B is

Mpa+Mpe=0 «ecceveriricciniinnnnnnnnnnee 24)

And, force equilibrium condition is
{I°“EQBA20’ } ....................... (25)
Py+Qpc—Hpa=0

where H,=H/N,, Py=PyN,, @=Q/N,,
H—':—H/Ny.
From Egs. (23), (24) and Eq. (25), 6 and R
will be given as

cevreaienne J RN (26)

Op=

R= 7‘_;;1‘ {(epa+apc+Brc)0p+o(Cpa+Crc)}

{rpa(epc—~Bap+Frc) +rap(@pa+apc+Frc)}



Then, horizontal displacement 4z of joint B is
dp= 1, tan Reeevvreeerreesertiesssnnnariceannnns @n
In the above obtained equations, chord slope 6;
(i=2~8, 11~17) is defined by Eq. (12).
While, 6,, 6,, are expressed by the following
equations.

v
2 X (1-+¢;%) sin 6;=0,
i=10
8
1 21 (1+¢;°) sinb;=4p
or 1{¥ .
bu=g{ 2 08007,
8 |i=n

17
- '2;0(650 sin 6,’+Sin 0;—‘9;)}
i=

1 8
ol=—{ 3 O—i)J;
81 =2

8
_ 2; (e,-" sin 19,~+sin 0{—0,')} + ABl
i=

where J;= {2 ¢;(1+¢;°) + (6;+6;-1) (2+¢,"+¢%-) /2
+ (Pt 0i) (2+e°H6%4,)/2}/6

Using Egs. (23), (26), (27), (28) and Eq. (8),
the displacement 4p to the increasing loads H,, P,
can be calculated with the parameters of the ratio
Py/H,=0 and 10.

Comparison is made in Fig. 18 between the H,—
4p curves due to the finite deformation theoty and
the small deformation theory.

15
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05 10 15 20(x10)48/p

Fig. 18 Horizontal Displacement 45 of the
Frame of Fig. 17.

4. Problem of Plastic Stability

(1) General Theory

A member AB subjected to bending moments
Myp, Mpa and horizontal force Hap is shown in
Fig. 19 with notation for the coordinate-axes, dis-
placements and forces.

If the member AB is divided into n elements,
moments at the every divided points of the beam
are given by considering the effect of the deflection
in the following matrix form.

(M]=C1]+[~XD)Map+Mpa[—-X]

Ohta + Yamasaki :

Fig. 19 Steel Member AB Subjected to Myg,
Hyp, Quz at End A and Mgy, Hpa,

Qpa at End B.
+Hop*Y]+Hap*R[—X]+[M°]
.......................................... 29)
where [M]=TM,7, [1]1=[1T7,
¥ 1
L7, i
[_X]=—")Zx s [?]:'?1 >
“:Xz 72
_"“.Xn _?n
[M)=[ M°,7,
M

Xi=Xil, Yi=Yil,
Hap*=rHag
Y; : vertical displacement at point 7.
Then, rotation angles 84, 0p at both ends are
given from Eq. (10) as follows ;

a8 U* B I,
i " 530
6p—R= 9354 =cofA$(-—-X)dX

which can be rewritten in the following matrix
form.
04—R=0o([a](¢]1+apfn) } ............... (31)
0p— R=0([b][$]1+bpén)
where [a], [6] : raw matrix of order (1, n),
[#] : column matrix of order (n, 1),
& B : curvature at the end B.
The vertical displacement Y; at point ¢ can be
obtained from the formula of ¢-Method*® as follows
(See Fig. 20);

Xi
Yi= X0 fo $(Xi—X)dX, (i=1, 2,m)

.......................................... 32

B-0

I-————Xz —
(2 3 Y i R n
AN AN
Al’________ y) ‘!B

Fig. 20 Simple Beam AB Subjected to Virtual
Concentrated Load P;=0 at Point 7.
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In general, the above obtained equation can be
transformed into the following matrix form,
(Y 1=04[X]-w([@][§]+[81-Fp) - 33
where [a] : square matrix of order (n, n),
[A] : column matrix of order (z, 1).
On the other hand, the curvature at point 7 is
generally rewritten from Fq. (8) as,
Fi=M;+¢&;, (i=1, 2, «n, B),
where f,‘=q_$,'-—M,'
which yields
[E]=[ M A ceeervvemmmmnnnennniniiiiiiiinins (34)
and Fp=—Mpa+Ep -eererrveersmmnninnninn (35)
where [€]: column matrix of order (n, 1) with
respect to &;.
Substituting Eq. (29) into Eq. (34), we have
[$)=Map((1]+[~X])
+1‘_/_IBA'[~X—J_+HA£*[7]
+H apg*R[ - X1+[M°]+[€]

Substituting Eq. (33) into Eq. (36), we have
{{I]+o H 4p*-[¢]}[§]
=1T/I_,_;§([1] +[-XD
+Mpal—X]1—H4p*(04—R)
[~X]—w H4p*¢p+[6]
+IM°]+[€]
which is transformed into
[F1=M 4p+ ((1¥]+[X*]) -+ Mpa- [ X*]

—H 45*¥ (04— Ry [X*]

—w H 4p*@ p+ [8%] + [M*]+[£%]--(3D)
[1*¥]=[¢]* 1], [X*]—T[C:I“‘[-_Z?],
[B*]=[¢]1'[8], [M*]=[{]'[M"],
[ex1=[¢]' (4],

[1] : unit matrix of the nth order,
[¢1=[I]+e H gp*:[«]
From, Eqs. (31), (36) and (37), we have
(l+oe HAz_;i[a] [(X*])(0a—R)
=w{M ap-La]((1*]+[X*])
+Mpa([al[X*]—8.)
+[al((M*]+[E* D +Balpl, -eeee (38)

o H* g(6][X*]-04+05
~(+o Hog*[b]J[X*]DR
=w{M 4p[b]1([1¥]+[X*])

+ M pa((E1[X*T—8s)
+[OI(M*]+[E%]) + Bk ) freeeeeee 39
Ba=ag—o H 45*[a][B*],
By=bg—w H og*[6][#*]
Eqgs. (38) and (39) are rewritten in the following
matrix form.

. @B]_L 7l rey
4 g =2 [33[%}[01 )
Finally, we can get the required formula as
MAB 1 04 —
e =+ [K][%z] + (1)
where [K1=[4]"'[B], [M]]=[A4]"'[C],

where

where

158
- 432[ [aJC1¥+ [l LX) [a][X*]~/9a:|
=L 1T+ [6ILX*] [BILX*]— 84
(1o Hag*[a][X*]) 0
~ (4o Hap*[a][X*])
O+ H as*n][X*]) 1
~ (Lo Hap*[bI[X*])
[LalCM*]+[a1[6%]+ But s
€1 "[[bj [M*]+[6] [64] +ﬂb53}

(B]=

(2) Illustrative Example

A cantilever with H-section of Fig. 21 is consi-
dered herein for the demonstration of this method.

From Fig. 21, end moments Mg, Mpa and M°
are given as

P3H,

— 2
S

0 .
o
—
B H
Cantilever AB Subjected to Concentrated
Loads H,, P, (=H,).
Map=—Hx¥q—H*Y ¢ }

Fig. 21

M pa=0,
Mo =0.
And Eq. (38) can be rewritten by putting R=
?C: HAB*=H—0* as
(1+wH—0*[_‘f_][X*]) @a-Y2)
=o{M 4p[al ([1*]+[X*])
+Mpa((al[X*]—£4)
+[aJ(CM*]+[E*]+8a€p}eereeeee (43>
Substituting Eq. (42) into Eq. (43), we have
(A+o HF[a][X*)(04—Y )
=0’{:H_o_*¢I[a]([1*:|+[X*])
~H#*Y [al((I¥]+[X*D)
G [@I[EF T+ Baf g} oorverersressreenans (44)
By using boundary conditions @,=0, ép=0 (.
Mpa=0), we can finally get the required equation
from Eq. (44) as follows;
_ (=0 H¥[a][I¥DY, +wla][£*]
T o Ha ) (] +[X*D)

where [a]:%-[Bn——l 6(n—1) 6(n—2)--12 6,

- (45)

(-X]= 0
—1/n
—?/n
—(n—D/n

by 0 0 0  0---0
[a].—?- 9 1 0 0 0
5 6 1 0 weemeen 0
8 Iz 6 1.0
’ : : IN i
3(n—2)—1 6(n—3) 6(n—4) i ™|
3(n—1)~1 6(n—2) 6(n—3) ~+-1

From the foregoing investigation, ¢—Y, curve
can be obtained for the H-section including residual
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Fig. 22 Residual Stress-Distribution Diagram
for H-Section.
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Fig. 28 ¢-Y. Curve of the Cantilever AB
Subjected to Weak-Axis Bending
Combined with Axial Thrust.
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Fig. 24 Stress-Strain Curve.

stress, shown in Fig. 22, by running computer
program with H=0.7, #,=0.001, 4 h=0.1, h=37.56
cm, t=10cm, w=4cm, /=170 cm, 0,=3300 kg/em?,
E,=2.1x10°kg/cm? and &, having the values 0, 0.1,
0.2, 0.3, respectively, and protted in Fig. 23, where
the effect of the stress in the web is disregarded.
The transition points from stable to unstable
equilibrium in Fig. 23 are given in Table 2. In the
case of ,=0, the above obtained values (0.0270,
0.765x10~%) are good agreement with the ones'®

Ohta « Yamasaki :

Table 2 Transition Points from Stable to
Unstable Equilibrium.

;r dmax=Yc ?c

0 0.0270 0.765 x10-2
0.1 0.0252 0.838 ~
0.2 0.0235 0.919 =~
0.3 0.0217 0.978 »

2-

1
10 f();{ 10 20 (x10®)
d
}] 05 x 1079
d

Fig. 25 g¢-Y. Curve of the Cantilever of
Fig. 21 with Rectangular Section
under Repeated Loading.

(0.0286, 0.765x10-%) estimated by using the stress-
strain curve of Fig. 24. Fig. 25 is cycric load-defle-
ction curve diagram of same cantilever beam with
H,=0.3, #,=0.5, 42=0.1, h=37.56cm, 5#=20 cm,
[=170 cm, 0,=2400 kg/cm?, E,;=2.1x10°kg/cm* and

é,=0.
5. Conclusion

In this paper, the authors have suceeded in deri-
ving general formula for the curvature of steel me-
mber subjected to bending moment combined with
axial force, based on the numerical integration
technique and interation method.

The derived formula is then used to analyze elas-
to-plastic finite deformations of steel structures and
to determine the critical loads employing the exte-
nded complementary energy method, wherein the
effect of residual stress can be taken into account.

The iteration procedure, as presented, converges
rapidly for any variable load by utilizing the incre-
mental load method.

By the way, if a steel member is subjected to axial
force in addition to bending moment, it is reasona-
ble to expect that the rigidity of the member is
influenced by the residual stress and finite deforma-
tion.

This fact is clarified in Examples of Fig. 12, Fig.
17 and Fig. 21 in which the deflection increases
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remarkably by the effect of the residual stress or
that of the finite deformation.

Although these numerical examples deal with
such simple structures as cantilever or rectangular
frame of Fig. 17, the presented method is, of cour-
se, applicable to more complicated structures.

Thus, it may be concluded that the advantages
of this method are its simplicity and generality of
formnlation, and even its applicability to a great
variety of problems with complicated loading and
structural conditions.
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