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LARGE STRAIN, ELASTIC-PLASTIC NUMERICAL ANALYSIS
BY MEANS OF FINITE ELEMENT METHOD

Mutsuto KAWAHARA* and Kenichiro HORII**

ABSTRACT

A method is presented for a large strain elastic-
plastic analysis by the finite element method. The
constitutive eqguations of elastic-plastic bodies can
be obtained as the incremental relations between
stress and strain. Thus, the finite element formula-
tions result in the incremental relations between
displacement and external load. In order to com-
pute the incremental equations, several techniques

hav to be introduced.
1. INTRODUCTION

Elastic-plastic analysis urider the assumption of
small deformation by the finite element method has
been studied by many research workers such as
Yamada, Yhshimura and Sakurai®, Marcal et.
al.?~® Armen, Isakson and Pifko®'", Zienkiewicz,
Valliappan and King® and others®~®. Survey pa-
pers presented by Yamada'®, Yamaguchi'?, Marcal'®
and Oden'® clarified the outline of the theories.
Finite element applications to continuous media on
the basis of finite strain theory are recently contri-
buted by Oden'”'®, Kawai'® and others. Especia-
lly, the analysis of a finite strain elastic body is
already published by Oden and Sato?®, Oden and
Kubitzua®?V, Haltz and Nather?®, Seguchi and Shi-
ndo? and others.

Elastic-plastic constitutive equations using finite
strain theory have been developed on the basis of
the thermodynamic considerations. Green and
Naghdi??+?* derived the equations
which were stated as the relations between the
Green’s strain tensor and the Kirchhoff’s stress
tensor. Yoshimura?® studied the relations based
on the strain increment, and others?” led to the

constitutive
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relations between the deformation rate tensor and
stress flux tensor.

Elastic-plastic bodies treated in this paper are
defined using the Green’s strain tensor and the
Kirchhoff’s stress tensor. Let it be assumed that
the Green’s strain tensor consists of the elastic and
plastic strain tensor, and that the Helmholtz free
energy is a function only of an elastic strain and
an absolute temperature. The constitutive equa-
tions are led to be expressed by the incremental
relations between strain and stress tensor.

Analytical solution of these media is much com-
plicated and seems to be difficult in practical use.
Yamada, Yoshimura and Sakurai?, Oden and Kubi-
tzua®’"), and Hofmeister, Greenbaum and Evensen?®
presented an approach by means of the finite ele-
ment method. Since the constitutive equations are
given as the incremental relations, the governing
equations become also incremental form in terms of
the increments of load and displacement in the
elastic-plastic problem mensioned above.

Those equations are generally called the incre-
mental equations. In the numerical computation of
the incremental 'equations, it is noted that the dif-
ferent load increment sometimes leads to the differ-
ent solution. Consequently, the several practical
techniques have been introduced to calculate the in-
cremental governing equations.

This paper treats the method of solution sum-
marized as follows: The governing equations are
transformed into the relations between the total
displacement and external load, and the transformed
equations are similar to the equations in the method
of direct formulation. However, these are actually
the equations of the incremental formulation, be-
cause the above governing equations include the
stress and displacement in the reference configura-
tion.

The Newton-Raphson method using the first and
the second order derivatives of the objective equa-
simultaneous

tions is applied to the nonlinear

formulations, which is generally solved by Newton-
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Raphson method only with the first order derivatives.
This second order method brings the better conver-
gency in the numerical solution than the first order
method.

2. KINEMATICAL EQUATIONS

Throughout this paper, the material description
is employed and the summation convention with
repeated indices is introduced. Material and spatial
coordinates are denoted by Xx (K=1,2,3) and x;
(k=1, 2, 3) respectively, and in the reference state,
both are chosen to be coincident each other and to
be rectangular Cartesian coordinates as shown in
Fig. 1. The components of the displacement vector
with respect to Xg are denoted by Ug and can be
expressed by equation (2.1).

o X, X

Reference frames and motion of a body
(two dimensional case)

Fig. |

Zp= 8 Uk 0 X +oevveeroomsersausmosanes @.D
in which 8px is a shifter. This paper deals with the
case that d,x can be regarded to be Kronecker’s
delta function.

oex=1 if k=K

Velocity vector vy at xp can be written as,

where superposed dot denotes the material differen-
tiation with respect to time. Using equation (2.1),
equation (2.3) is transformed into equation (2.4).

The material time differentiation can be reduced
to the usual partial differentiation in the material
coordinates system. The deformation gradient ten-
sor xp,x is obtained from equation (2.1) as in the
following :

Zp,x =0,k + 0, UL k=0 Oux+Unm.x)

in which,K denotes the differention 8/8 Xx. Using
Zr. i, Green’s strain tensor exp is defined by the
following equation :

2 KL p K, L— O Lowrrosrrresrsorresssenns 2.6)
in which 8x; is the Kronecker’s delta function.
Making use of equation (2.5), equation (2.6) can
be transformed into the form expressed in terms of

Kawahara-Horit :

Ugk.
2ex1=Ug, 0+ UL k+Up gUnm L+ 2.7
The rate of strain tensor éx; is obtained by dif-
ferentiating both sides of equation (2.6) with re-
spect to time as in equation (2.8).
CRL=ARIE], KT, L+reerrereresrersrnsasassssnsnsasnns (2.8)
where

1
dkl':?('vk,l'kvl,k) ............................ 2.9

in which dj; is named the deformation rate tensor.
In the derivation of equation (2.8), equation (2.10)
is used.
Zp g =Up 12, g =0 UL J revereeroeosees (2.10)
Substitution of equation (2.4) and equation (2.5)
into equation (2.8) and use of equation (2.10) lead
to equation (2.11).
2éxr=Un,1+ UL x +Unt,gUnt,1+ Unt,cUnt,L

3. EQUILIBRIUM EQUATIONS

It is assumed that the strain tensor egy can be
decomposed into elastic strain tensor exy’ and plas-
tic strain tensor exr”, i.e.

CRLmCRL FRL” veeerrereesaeserssieeiiions 3.1

Local from of energy balance equation can be
expressed in the form of equation (3.2).

por._poU_FSKLéKL_QK'K:O ............. 3.2)
in which p,, 7, U and Qg are the mass density, the
heat sourse per unit mass, the internal energy per
unit mass and the heat flux vector, respectively.
These are the quantities measured in the reference
state. Sgr is the Kirchhoff’s stress tensor, which
is the stress measured per unit undeformed area re-
ferred to the deformed Xx coordinate. Denoting
the stress vector by £,

E= S L NG Loreverreresserasteersaisenennnas (3.3)
in which Ng is the outward unit normal of the
underformed surface area, and G is the base vec-
tors of the deformed material coordinates i.e.,

Gr=rr+Ug, DI -erreeeemerrmeeninonne (3.4)
where Ix is the base vectors of the undeformed
material coordinates.

Clausius-Duhem inequality in terms of the quan-
tities in the reference state can be described in the
following form :

& T
poTS—par—e—QK,K—QI;“—’f-go ......... (3.5)

in which S is the specific entropy and 7T denotes
the absolute temperature. Stress equilibrium equa-
tions can be written as equation (3.6), using the
body force Fp.
(2. KSKL) L+ 0oFp=0 ccereverernonnninns (3.6)
In this stage, the Gibbs equation (3.7) is intro-
duced.
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PoST=ﬁoU—SKLéKL' ........................ 3.7
With the aid of equation (3.1) and equation (3.7),
equation (3.2) and (3.5) can be transformed into
equation (3.8) and equation (3.9), respectively.

05— 00TS~ Qi gk +SK1érL”=0crreeer (3.8)

QxTx P ) NSO (3.9

Skréxr”—

In the case that Qg =0 and r=0, equation (3.8)
and equation (3.9) can be reduced to the follow-
ings.

poTS=SKLé”.>:O .............................. (3.10)

The first part of equation (3.10) means that the
specific entropy is caused by the rate of plastic
work Sxréxr”, and the second part of equation
(3.10) states that the rate of plastic work has to
be positive or equal to zero.

Introducing the Helmholtz free energy,
and substituting this into equation (3.7), equation
(3.12) associated with elastic strain can be obtained.

popz_p05T+SKLeKLr ..................... (3.12)

Assuming that the free energy F is the function

of only exy’ and 7, as in equation (3.13):

F=Flegr, T)ereererrreesrinineinsianiniens (3.13)
equation (3.14) is followed.
. F , oF .
poF=po~5;-K*L“,'3KL'+Po 3T AR (3.14)

Comparison between equation (3.14) and equa-
tion (3.12) leads to the following equation associa-
ted with the specific entropy S and the stress Sky.

oF
S:_TT" ................................. (3.15)
oF .
SKL:p"W .............................. (3.16)

4. EQUATIONS OF VIRTUAL WORK

The formulation of the finite element method re-
quires the equations of the virtual work. Both the
direct and incremental forms of the virtual work
equations are derived with the aid of the stress
equilibrium equations. Multiplying both sides of
stress equilibrium equation (3.6) by v, and integrat-
ing throughout the whole volume of a body, equa-
tion (4.1) can be obtained.

f o xSk, LoadVik J ooFindV,=0

where V, and A, denote the undeformed volume of
the body and its surrounding surface area.

Application of the Green-Gauss theorem to the
first term of the left hand side of equation (4.1)
leads to the following direct type virtual work equa-
tions.

J-V(SKLg'KL)dVU::,Q ........................... 4.2

where

in which Py is the surface force relating to the
stress shown in equation (4.4).
Py=SkrOnx+Ung)NL
In the elastic-plastic problems, the incremen gz
type virtual work equations are required, becai jsq
the constitutive equations are introduced in ter m
of Skr and éxyp. Differentiating both sides of
equation (3.6) with respect to time, equation (4.5)
is obtaind.
(p, kS KL+ SKLLR KL+ P Fp=0neereees (4.5)
Multiplying both sides of equation (4.5) by vy,
integrating throughout the whole volume of the
body, and using the Green-Gauss theorem leads to
equation (4.6).

jv Skréxr+SxrterdsnUn.x)dV,
=J.A (Skrze. k+Skrte. ) NeoparUndA,

+JVPOFNUNdV0 ............................ (4.6)

Substituting equation (2.5) and equation (2.10)
into equation (4.6), the incremental type virtual
work equation can be described in the following
form.

where
.Q:JA PNUNdAo+jVﬂoFNUNdVo ~~~~~~ 4.8)

in which Py is the rate of the surface force relat-
ing to the stress and stress rate shown in equation
“4.9).
Py=[Skr@nx+Unk)+SkrUn g INL++(4.9)
Equation (4.7) can also be derived by differentiat-
ing both sides of equation (4.2) and by using the
following relation neglecting accelelation.

Dl gem Qneveermrnecrnneeeice s (4.10)

Srr = Up kU g, L oveeeesemseesssneesnnne (4.11)
Namely, equation (4.7) can be rewritten as,

JV(SKLéKL+SKLéKL)dVo:Q """""" (4.12)

In the practical computation of the elastic-plastic
problems, it is convenient to assume that the stress
Sk is constant during the small increment of the
external load. Therefore, equation (4.7) and equa-
tion (4.12) can be transformed into equation (4.13)
and equation (4.14), respectively.

J‘V(SKLéKL+SKL(O) UptoxUpt,1)dVy=2

JV<SKLe'KL+SKL<o>éKL>dVo=9 ----- (4.14)

where Sxi (0) denotes the reference stress in the
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state before the small increment of the external
load is applied and is assumed to be constant dur-
ing the application of the increment.

5. CONSTITUTIVE EQUATIONS

For simplicity, the thermal effects in the yielding
fun ction of elastic-plastic bodies are neglected in
h’ 1s paper. The constitutive equations of elastic-
plastic bodies are given by the relation between
stress increment Sk; and strain increment éxyz.
Assumming that the yielding function f is the
function of stress Sxz and plastic strain exr”,
equation (5.1) can be obtained with work hardening
parameter «.

FUSKL, €RLY) ==k cveeeressrnesisrissasiniisns 6.1

Using the function f, the following four condi-
tions can be defined :

i Elastic state (exr”=0)

f<<e with #=0--.-. veseeserscecerenansacasetres 5.2)

ii Loading from an elastic-plastic state(éxr”>0)

f=r with #30 and —aaS—fSKL>0 ----- 5.3)
KL

iii Unloading from an elastic-plastic state (éxr”

=0)

f=r with £=0 and of Skr<0-e+(5.4)
ISkL
iv. Neutral state (égr”=0)
f=r with #=0 and of Skr=0-(5.5)
9Skr

With respect to plastic strain increment éxr”,
the flow rule is introduced as in equation (5.6).

af
T evesennenns ceeeen(5.6)
where 4 is a scalar.
related to stress increment Sk as shown in equa-
tion (5.7) :

Skr=Arrmnéun' +BrrT cwreeeeees e (5.7)

where

éxr’=4

Elastic strain increment is

A _ *F
KLMN=Pq Tenoemn
2 F
BKL=P0W

Equation (5.7) can be derived by differentiating
both sides of equation (3.16) with respect to time
and by using equation (3.14). Substituting equa-
tion (3.1) into equation (5.7) leads to equation
5.8).

Sxr=Aximnéun—Arrunéun”+BrLT

Differentiating both sides of equation (5.1) with
respect to time and considering that « is the func-
tion of egr” only, equation (5.9) can be obtained.

. af i3
dSkL Skr+ ae"KLeKL T dexr

Kawahara-Horii :

Combining equation (5.6), equation (5.8) and
equation (5.9), 4 can be expressed in terms of éxyr
and 7. Using the resulted 4 and using again equa-
tion (5.6) and equation (5.8), the constitutive
equations of elastic-plastic bodies can be written as
the relation between stress increment Sxz, strain
increment éxy and temperature increment T

SKL=CKLMNéMN+DKLT ............... 5.10)
where
CximMn=AgLMN
af

A —a—
KLFPQ 8Spg 9Sgs

“(af(am_afA df
8SMN 6eMN" 6eMN”+ PQMNaSPQ)

Dygr=Bgy

ARSMN

af 9
AKLPQ'G_S—P;"‘aTR‘;BRS

—(8]“)(6/: of .4 3 f
GSun) \deun” demn”  TOMN3Spe

In the loading state, i.e. under the condition of
equation (5.3), the constitutive equation is given in
equation (5.10). Under the other conditions ex-
pessed by equations (5.2), (5.4) and (5.5), the
constitutive equation is reduced to equation (5.7).
Equation (5.10) is a generalized formulation of the
relation developed by Yamada, Yoshimura and
Sakurai?, Marcal?, and Oden'® using Green’s strain
tensor and Kirchhoff’s stress Equation
(5.10) is valid under the restriction expressed by
equation (3.9), and it is clear that Cgpmny has to
be positive definite.

In order to illustrate the method of solution, one
of the special case of equation (5.10) is described
in the followings, based on the assumption of free
energy F given in equation (5.11).

osF=Egiunerxr' emn’ —B80krexr’ (T—Ty)

tensor.

~5 (T =Tt ereerereresesrnresenes 5.1
where E
4
Exrmn= maKLaMN
E
+m OrmOLN+OrNOLM)
a E
A= 1-2v

in which E, v, ¢, C, and T, is elastic modulus,
Poisson’s ratio, thermal expansion coefficient, spe-
cific heat and temperature in natural state, respecti-
vely. In this case, equation (5.7) becomes,
Sir=Egxrpnémn —B88grT veosreenn (5.12)
Von Mieses yielding criterion is supposed as :
FmalB Ty eeeereeieeei s (5.18)

where
Suum

1
' =5 SkL'Skx’ Skr'=Skr~ SxL

Using equation (5.11) and equation (5.12), equa-
tion (5.10) can be reduced into equation (5.14).
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Skr=Crrmneun-+Dgr T oereerens (5.14)
where
f_._8f
Exrre 55— 55 - Ersmn

Cxrmn=Egrmun

[ f a
H' + 7570 Epors 7588
EKLPQ—a—L-"'if—WRs
Dgr=8g— 95pg 9 S5ks

H’+ f EPQRS'”‘?‘Z—

aSpQ aSRS
0r VT Se
8SkrL 2 JJ

in which H’ is strain hardening coefficient given by
the experimental ways. Equation (5.14) corre-
sponds to the one obtained by Yamada, Yoshimura
and Sakurai® in the form of the relation between

Kirchhoff’s stress tensor and Green’s strain tensor.
8. FINITE ELEMENT ANALYSIS

It is supposed that the continuous medium is
divided into the several small media called finite
elements. The displacement of ¢th node in the K
direction is denoted by U,x on each finite element.
With the aid of shape function @,, the displacement
inside the finite element Uy is approximated to be,

Substituting this into equation (2.7), exr can be
expressed as follows.
2egr =P, kUsr+ Do, LUk + 0o, k@5, tUat Upm

Strain rate égy can be described as in equation
(6.3), using equation (6.1) and equation (2.11).
ZéKL=®a»KUaL+$'a,LUaK .
+ 0o kP, LUamtUppr+Pu, k@5, LU Usmt

Substituting equation (6.1) and equation (6.3)
into equation (4.13) and using the relations,
Skréxr=Sk1Orm+0s,tUsm)Po,kUapmr

.............................. (6.4)
Sxr@Unt,kUnt.1=Sk1,0)Pu, k@5, LUt Usnr
.............................. (6.5)
equation (6.6) can be obtained.
U“T“=UNQM ................................ (6.6)
where
TﬂIZJV{SKL(5L1+@a,LUaI) ‘DK
+SELO 04, kg, LUas} @Voroorene (6.7
Qﬁ,=JVpoF,a>ﬁdV°+L ProgdAeeeeee (6.8)

in which P;is related to Sgz as shown in equation
(6.9).
Pr={SkrQrx+u,gUar) +Skr(0)Pu, g Uar} N

Since Uﬁl have to be arbitrary in equation (6.6),
the following simultaneous equations can be drived.
TropmGppereeeereeresvemniininninie, 6.10)

The stress-strain equations described in equation
(5.10) can be transformed into equation (6.11)
with the use of equation (6.3).

Skr=Crrun@us+9,uU, )00,nUes+DgrT

Combining equation (6.10) and equation (6.11),
and rearranging dummy indices, the governing equa-
tions for the finite element method can be obtained
in the following incremental form.

Kﬁ,a,.Uajzg“_gﬂ,* ..................... (6.12)
where

Kﬂlu]=J’V[®,9.K<3LI+ @5..Usp)

Crrmn@umy+0,mU, ))Pu,n
+0r 7Sk Oy, xPp,r]1dV e+ (6.13)

Qﬂl*zjVDKLT(6L1+®a,LUa1) 05,54V,

!ffﬁl in equation (6.12) corresponds to the equiva-
lent nodal force caused by the increments of body
force F; and surface force Py, QN* is the equiva-
lent nodal force resulted from the incremets of
temperature 7. The right hand side of equation
(6.12) is all known terms, and the.coefficients of the
left hand side consist of Sg;(0) and U,x in the
reference configuration. In the state that the ex-
ternal load increments are applied, on the assump-
tion that the influence of the changings of Sgr(0)
and U,x to K,jgr can be regarded to be negligibly
small, K,y can be considered as a known and
constant array.

In the same manner as of the conventional finite
element method, the simultaneous equations on the
whole continuum are easily constructed by using
the equilibrium equations of the nodal force and
the continuity equations of the nodal displacement.
The equations can be derived as the relations be-
tween the increments of nodal displacement and ex-
ternal load. If Kg7.7 can be considered to be con-
stant, the equations become linear
The increments

simultaneous
of displacement can be
obtained by these equations applying the increments
of external force. The increments of stress can be
derived by substituting these into equation (6.3)
and equation (5.10). Adding the increments of
stress to the stress in the reference configuration,

ones.

and referring to the conditions described in equation
(5.2)~(5.5), the new coefficients Cxrayny in equa-
tion (5.10) can be derived. With the use of the
new Cgryn, the next cycle of the increments of
applied external force is to be followed.

7. ALTERNATIVE APPROACH TO
FINITE ELEMENT ANALYSIS

It is noted that by the method described in the
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proceeding paragraph the different increments of
external load sometimes yield the different incre-
Therefore, some iteration
In this paragraph the

ments of displacement.
computations are necessary.
governing equations are transformed into the con-
venient forms for the application of the Newton-
Raphson iterative method.

To start with, the stress-strain equations is trans-
formed into equation (7.1) under the assumption
that increments of external load are small.

Skr—Skr(0) =Cxrmnlemn—emn(©0)) +Dg T

where Sg;(0) and epn(0) denote the stress and
strain respectively, in the reference configuration.
Skr and epyn are the stress and strain, respectively,
after the increments of external load are applied.
Cxrmn 1s considered to be constant in each load
increment.

Equation (7.1) can be rewritten as,

Skr=CrrmnemN+S gL (0) cereeeeeerirn (7.2
where
Sk =Sk —Cxryunenn©) +Dg, T
.............................. (7.3)

It follows from equation (4.3) and equation (7.2)
that

fv CKLMNeMNéKLdVOZQ—J'V Sk éxrdV,

Introducing equations (6.1), (6.2) and (6.3) into
(7.4) and noting that Uﬁz is arbitrary, equation
(7.5) can be obtained.

KﬂlaJ.Uajzgﬂ]_gﬁ, ........................ (7.5)
where

KﬂIajzjV [@ﬁ,K(aLl‘F@s,LUM) Crrmn
1
. (6M]+7®7.MUr]>®a,N]dVO
Qp]:JA PI@ﬂdAO+JV ,OOFI@ﬂdVO

7351=jv [Skr(0)@rr+0, U, N0 x1dV,

Equation (7.5) is formal relations between dis-
placement Up; and equivalent nodal force 257 —2,;.
However, since the term 72,91 includes the stress
Sk (© and strain epyn(0) in the reference con-
figuration, equation (7.5) can be regarded as the
modified incremental equations. The subsequent
procedures of solution are the same as those of
equation (6.12). It is convenient to apply the
Newton-Raphson method to equation (7.5), because
the equation is the third order simultaneous equa-
tions in U,;, making it simple to calculate the first
and second order derivatives.

Correspondence between
equation (7.5) is stated in the followings.
tion (7.4) can be rewritten as in equation (7.6).

(6.12) and
Equa-

equation

Kawahara+Horii :

fv ({Crimn(emn—emn(0))éxr
+Skr @ éxr} +DgrT1dV,
=L PyUndA,+ J VpOFNUNdVo

—JVSKL(O)éKL(O)dVo ................ (7.6)

Substituting equation (4.2) into the third term
of the right hand side of equation (7.6) and re-
arranging it lead to,

jv (Skréxr+SrrL(0)éxr) dV,

- f . (Pu=Py()UndA,

+fvpo(FN“FN(O))UNdVo ......... 7.7
Equation (7.7) can be rewritten as,
[, Sxréxr+SxrOexnaVi=t .)

where
= j ) PNUNdA0+JV BN TNV reeesn (7.9)

in which the following relations are used.

Pr=Pr—Pp(0) ceeeeeeeeesemsensacinninnan, (7.10)
Fpn=mFp—Fa(0) cooeveveveeeeeeeneessnnaannnn (7.1

Equation (7.8) is the same equation as equation
(4.14). Equation (7.5) is the governing equation
based on equation (7.8), and equation (6.12) is
derived from equation (4.14). Therefore, equation
(7.5) can be regarded as the transformed relation
of equation (6.12), which is convenient for the
iterative computation as stated in the preceedings.

8. NEWTON-RAPHSON METHOD

In order to solve nonlinear algebraic simultaneous
equations, Newton-Raphson method is generally in-
troduced.

Nonlinear equations are denoted as,

Ng/)(yj):o ........................................ 8.1)
where y;(j=1, 2,---M) is the unknowns, and M is
their total numbers. N shows that the equation is
the Nth equation of the whole system. (N=1, 2,
«-M). Expanding equation (8.1) with the use of
power series around arbitrary initial values, it
follows that

No(y ) =No0) +NJp©0) + (y4—y4(0)
3Nt (O (r =60+ (=31 ()

5 M Taam O+ =34 () (31 =31 0))

(Y (0)) e oveeeenmrermnerianniann 8.2)
where

aN
NJk(O)=|:—ayi (y; <0>>]

92N
N0 =] 52 (350 |
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N @ - :(0))
@ | s O |

Neglecting terms of or higher than second order,
equation (8.1) can be denoted as follows :
No(y)=Ne0) +NJ(0)+ (ya—yx(0)) =0

g is calculated by equation (8.3), as shown in equa-
tion (8.4).
V=35 (0) =N T (0) Ny (0)

Thus, the following algorithm is obtained referr-
ing to equation (8.4).

YRz y 0 N =1 (g ) N, ()00 ...(8.5)
where (n) is the number of iteration cycle.

Equation (8.5) is the first order convergence
algorithm of Newton-Raphson method.

In this paper, second order convergence algorithm
is also treated. Neglecting terms of or higher than
third order in equation (8.2), equation (8.1) can
be expressed as,

No (37 =90 +NTp(0)+ (ye—y(0))

3N Tt O+ (yrm= 34 (0)) + (31=31 ()=0

Letting y,* denote the corrected value of y,, it
follows from equation (8.4) that
Y= e =y =y (0 + VT (0) N, (0) -+ (8.7)
Substituting equation (8.7) into equation (8.6)
and rearranging it, with the approximation of equa-
tion (8.8),
Y= Ye O =yp*— 3 =N T OV 9 (0) -+ (8.8)
the following equation (8.9) is drived.
Nop(0) =N J,=1(0) N J,(0) N (0)

+NTR0) (ya*—y) + NP (0) =0 oveevees (8.9

where
Nt (0) =N T 00+ (9= 30)) - (31— 4 (O))
........................... (8.10)

Equation (8.9) can be transformed into equation
(8.11).
LTS VL A (1) WAV E (1) PN (8.11)
Referring to equation (8.11), the following al-
gorithm of the second order
method is obtained.
yk*‘”“):yk(”*”—NJk"(yj(”*")-Ngo*(yj("“))

Newton-Raphson

where
1
N‘/’*(yj(n+l)> — 5 NJIzl(yj(n+]))

(PR — D) e (g B gy D) L (813)

Starting from the appropriate initial values of
¥#(0), and using equation (8.5), (8.12) and (8.13),
the iteration computation is proceeded.

The second order Newton-Raphson method men-
tioned above requires less iteration procedures than
the first order Newton-Raphson method does.

In practical computation, ¥J,; needs the three

external load P
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dimensional array, large core storage and computa-
tional time, in spite of the easier formulation of
N J.; with the use of equation (7.3) as the govern-
ing equation.

9. NUMERICAL EXAMPLES

In order to compare the incremental loading
method (I.L.M.) with the direct iteration method
(D.I1.M.), simple numerical example is illustrated
in Figure (2). The stress-strain equation is re-
garded to be expressed by that of Hooke’s law.
Thermal terms are all neglected. As the shape
function, the constnt strain type function using area
coordinates of a triangular finite element is intro-
duced. Good agreement between I.L.M. and D.I.M.
were found in the tension examples. However, in
the case of compressive external loads, the different
displacements were obtained corresponding to the
different increments of external load. It is noted
that the displacements of D.I.M. are larger than
that of I.L.M. Figure (3) illustrates displacements
calculated by D.I.M. both for tension and compres-
sion loads.

As to the elastic-plastic numerical example, the
simple structure shown in figure (4) is dealt with.
The material of the structure is considered to be

(t) _ /
1000k—1 direct itelative B
! a method o
incrementay load Qo(
P .
- pitch 90"
© otvl,000° 25° ox
¢ ¢ cnt °
x 0~1000° 50 =%
[} pitch
750 ] B Co
° 0~200° 20
o 00%430° 40t
Q
o & « 0%400°  s0°
° RY 400%450°  [g*
< incremental load
tension & method
=S o
| @ direct itelative
500 ]:‘ method J
o *
o x % o
ol °
o]
o ©
0%
£O
S P24 e
Nk N
250 e E
COMPression I
I s
3 ’ 8 J
E=2.1x10t m* g 11 ]
V=03 L20m j
fimte element
0 | 1aealization
0 0.5 1.0 1.5{my

displacement u at point 2

Fig. 2 Comparison of incremental load method with
direct itelative method under elastic-stress
strain relation.
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1000t Table 1 Comparison of iteration cycles
T30t external tension compression
500t Newton force
tension ) Rephson method L000t | 2000t | 400t | 200t
250t first order convergence doycles | Scycles | Scycles| 3oycles
2 second order convergence| 3 3 4 2
=100t
' 200t =100t P P
i @ ® b
. it 300t y T
£Oompression ESE @ @ EEE
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i i P35t
4 a0 7, ©
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il [ ® @ I
wll! 11 &
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whll - @ ® i P= 11351«
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iili EEE? p=130t € =20 % 10°L/n
5 () ) i v =03
e i 0= 440t
i ® ® ] p:lSZf}[Q#
10 i 12 ~ug yielding elements
L 2.0m
| ool Fig. 5 Deformation of cantilever beam (small strain)
Fig. 3 Displacement and yielding elements.
equation (8.5) and equation (8.12). The
comparison of the number of iteration cycles
between the first and second order Newton-
) —~— LLM. small strain theory Raphson method is listed in Table (1). Both
100~ TR i i .
] LLM. - fiite strein theary methods shows good agreement in the final
displacement at point 3 -=-0--= M.LM., small strain theory 1 I h d . ti
cispanenent al oot 1 oe M3 fiite stedin theory results. In .t e procedure using equat ion
o (8.12), the time needed for the calculations
- 1.L.M. = incremental foad method [ N
8 Roman numersis denote numbers o2 P e of array ¥J, were so long that each algo-
e / of yielding finste elements. e 2 = @4 rithm did not make big differences in total
M.LM.= modified iterative method 53® T & times. The first order Newton-Raphson meth-
Arabi’ numerals denote numoers ER2bar ™y oIk od would be convenient to calculate during
of yielding finite elements. V=03 .
o=t i the state of rather small external load. Figure
o \ ) ) ) ! ) (5) and Figure (6) show deformations of
020 30 il 56 1 . C
vertiont gionacemen o, L0 T cantilever beam and yielding elements under
Fig. 4 Load displacement diagram small deformation assumption and on the
expressed by equation (5.14) in which H'=0 .
X . . P
and T=0. Figure (4) shows the load-displace- oot £
ment diagram. The numerical results derived
from equation (6.12) and from equation (7.5)
are denoted by I.L.M. and M.I.M., respectively. I
Numerals in the figure are the numbers of the §
yielded elements, the ordinates of which in-
. . - . p=gst:
dicate the applied load at the yielding points. st
The figure also shows the comparison between P=inst
the solutions under the small deformation assump- P=1190t £ = 2. x 0t/mt
tion and the solutions on the basis of finite pemst v=03
. =12, - ;= 440t /mt
strain theory. On the whole, the results of P=m5t ) "
. . 6.0
M.I.M. give larger displacements than that of =

I.L.M.
In the computational procedure of M.I.M.,,
Newton-Raphson method is available both for

WY yielding elements

Fig.

6 Deformation of cantilever beam (finite strain)
and yielding
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basis of finite strain theory, respectively.
10. CONCLUDING REMARKS

The elastic-plastic numerical analysis in this paper
is summarized as follows :

To start with, the Green’s strain tensor is
assumed to be decomposed into the elastic and
plastic strain tensor.

The elastic strain is derived from the Helm-
holtz free energy, and the flow rule is introduced
for the plastic strain.

The constitutive equations of the elastic-plastic
bodies using Kirchhoff’s stress tensor and Green’s
strain tensor are transformed into the incremental
relations between stress rates and strain rates.
These equations correspond to the generalized
relations proposed by Yamada, Yoshimura and
Sakurai”, Marcal®~® and others.

Using the constitutive equations, the compatibi-
lity equations between strain and displacement
and the equations of virtual work, which are
derived from the equilibrium, are obtained as the
incremental equations between external forces

and displacements.

The alternative method is presented on the
basis that the stress-strain equations given as the
incremental form are transformed into the total
strain relations between the stress and strain in
the state after deformation.

Using these constitutive equations, the finite
element equations of solution are obtained as the
total formulation between external forces and
The equations is formally given
However, since these

displacements.

as the total formulation,

include the stress and strain in the reference con-
figuration, the relations are the incremental equa-
tions actually.

In the practical computation, it should be noted
that the choice of the increments of the external
forces is the main and important techniques. In
order to calculate the incremental equations, it is
important to know how to choose the external load
increment, namely, to select the load step consider-
ing how each finite element may yield. The equa-
tions described in this paper is the alternative forms
of the incremental equations for the purpose of
making the Newton-Raphson method applicable.
This method is convenient especially in case of
applying the second order Newton-Raphson method.

On the assumption that the constitutive equation
is given as the relation between Kirchhoff’s stress
tensor and Green’s strain tensor, the generalized
constitutive equation can be obtained as the form
of equation (5.10) which is based on the free en-

of Finite Element Method 1

ergy equation (3.13). Egquation (5.10) can be
applied to the every form of free energy assump-
tion. Moreover, the final equations of the finite
element method can be led to the convenient form
for the practical computation.
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