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SNAP-THROUGH BUCKLING OF BLOCKS LAID IN A LINE

By Masahiro KAWAGUCHT*

I. INTRODUCTION

One of the important problems of concrete pave-
ments is so called blowups. Pavements resist blow-
ups or buckling generally by their bending stiffness
and dead load. As the author has previously re-
ported”, the continuous pavements would scarecely
buckle because of their effective stiffness of con-
tinuity. Concrete pavements usually needs contrac-
tion joints in order to prevent from unfavorable
cracks due to shrinkage. It means that the joints
separate the pavement in length and reduce the
effective bending stiffness. As a result, the pave-
ments with joints may have much greater oppotuni-
ty to buckle than continuous pavements. An ex-
ample of the buckled pavements with joints is
shown in Photol, which was taken by the author
on the route No. 8 in Takaoka-city, Toyama Pre-
fecture, August 13, 1970.

In this study the pavements with joints are to be
investigated against buckling. Since, practically
speaking, the boundary conditions at joints are quite
complicated?, it is necessary to idealize that part in
the investigation.

A series of blocks laid in a line was adapted for

Photo 1 A buckling of pavement with joints took place
on the route No. 8 in Takaoka-city, Toyama

Prefecture, in the afternoon of August 12,1970.

* Dr. Eng., Assistant Professor, Dept. of Transportation
and Traffic Eng., Nihon Univ., Funabashi-shi.

the studies of the pavements separated by joints.
Each block was assumed to have infinitely large
stiffness of bending. As for the conditions of con-
nections of each block, the way of rectanguler
prism type and that having hinged joints were used.
The latter is the simplest statical model of the pave-
ment with joints.

Thus, more informations concerning snap-through
phenomena of the pavement with joints, for in-
stance, the upper buckling load was obtained for
the first time in the field of this subject.

1I. SNAP-THROUGH BUCKLING OF
BLOCKS LINKED BY HINGED
JOINTS

Some theoretical analyses of the buckling of the
link have been reported in the previous papers?:®.
For simplicity only symmetrical links were treated
there. In this report a general type of link is
analysed.

(1) Fundamental equations

Let us consider the state of link as shown in Fig.
2.1. It is here assumed that the link has initial
imperfection and is affected by elasticity of appara-

Fig. 2.1

Geometrical characteristics and forces
of the link.
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tus which is represented by the spring # in Fig.
2.1. The bending stiffness of the link is also as-
sumed infinitive. The link is restricted to one
degree of freedom.

From the equilibrium of the link, the compressive
stress resultants of the buckled link are determined

as follows : (Notations are listed in Appendix)

R‘Z%Q‘ b+b Qz]
R,= b—l—b Qi+ Z’liij Q, Lo @-1)
H,=2 R g, J
i::Z: Ny S

The relation between the axial forces and the

horizontal reaction is obtained as follows :
A A
H=P, —1;— =P, 5,

At the moment of buckling, the variation of
axial lengths of the struts may be observed, of
which the amount is

A=)+ @ =1
=l:(Px“Pat)/EA+lz(P2—Pa2)/EA """ 2-3)
where 7,’ and [’ satisfy the following geometrical
relation, namely
L+ = VbEr ot Vb + (H—Hp) [u

From these considerations, the equation of un-

known displacement c¢ is obtained;
7{{c/b)?— (co/b)?} + (QYEA) (b,/c)2=P,|EA
in which ¢, is the initial displacement of the hinge.

To simplify the above equation, following nondi-
mensional terms are introduced ; namely,

v=clby, vi=co/by, q=CQi/EA, p=P,|EA,

7=0.5(b,/1;) A1 +b,/by) {1+ b,/b, + EA/u LieLJb},

A=by b (d\[b+ €,[by+ Q,1Q)) (D) [ (1 +5,/b))

.............................. (2-5)
Consequently, the eq. (2-4) is simplified as
PP 0e2) F A QU Peesenvenrecmonvemsuennnins (2-6)

The axial force after buckling in eq. (2-2) is also
expressed as
Pa=Po/EA=A Qv -reeesesesivinieinnncnnns @7
The total potential energies before and after
buckling consist of the strain energies of struts and
spring and the potential energy of dead weight;
thus

P2, P2, __H_+ codl 0,+ coe2 Qz

U=3Ea*2F4
_ Pl | Paly I‘Ia2 d, Cey
Ue= %At 5 a T3 T 5 @t Qs

where U and U, denote the potential energy before
and after buckling respectively. The potential
energy of the dead weight is zero at the level of
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¢,=0. Nondimensional equations of those energies
are as follows :

u=U/EAL,=a,p*+a,qu,, -9
w,=UyEAlL=a,p,*+a.,qu
in which

a;=0.5{1+ (by/b) 2L/l + (1,[b)* - EA[r L},
a2=d1/lx+b1/ll’ez/bz‘Q2/Q1
Initial displacement v, acts as initial imperfection
at buckling®.

(2) Calculation of the buckling load

The lower limit of the buckling load p., and the
lower buckling load p; have been obtained as the
critical loads of the link®»'®», The lower limit of
the buckling load is determined by the condition
that the fundamental equation (2-6) has a solution
or not (of Fig. 2.2).

O v v W Vi Ve v

Fig. 2.2 Equilibrium equation of link.
r(v*—v)+iglv=P

At the extreme point of v—p curve, v is equal
to (2q/27)'"*, which is called v.,. Substituting v.,
into eq. (2-6), p., is obtained :

Der=1.89(F22gD) 3 Pyt rerererimnannanes (2-10)

When the initial displacement v, is greater than
 Bv.,, pcr is negative, that is, this critical load
loses a significance.

In order to determine the lower buckling load
1, the potential energy is to be considered. When
v, is smaller than v,,, the relations between p.,,
pr and the upper buckling load p, can be recognized
as shown in Fig. 2.3. Although p,, and p; have
been defined previously by the author, p, is intro-
duced for the first time in this subject.

The energy difference between « and #, is calcu-
lated to determine py,

Azal(Pz'“Paz)‘l‘azq(“Uo"‘v) ............... (2-11)

Substituting eq. (2-6) and (2-7) into the above p
and p,, the necessary condition for v, is derived
from the criterion of equal energy (4=0). As the
initial imperfection v, is small, the characteristic
parameters of the system have the following rela-
tion from eq. (2-5) and (2-9) :
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The energy difference is then derived :

4= (v—v){a,rtv(w+v,)?—0.5 axq} fv-- oo (2-13)

In order to obtain v;(>>v,) from 4=0, the follow-
ing relation must be satisfied :

ar? vy (Vo +1y)2—0.5a,q << 0
then,
vl (Rqf27) =,

Substituting the solution wv; into eq. (2-6), the
lower buckling load p; is obtained. The mechani-
cal system can buckle if it is supplied with energy
gap p’ in Fig. 2.3. This critical load has been
used in designing shell structure.

The upper buckling load is derived :

The displacement of upper buckling v, is calcu-
lated by eq. (2-6). Only the upper buckling load
is to be called, in a strict sense, the critical load,
because the system jumps at p, without any supply
of energy as shown in Fig. 2.3.

u,U.
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Fig. 2.3 Total potential energy of the link for
given compressive force.
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Fig. 2.4 Critical loads versus dead load (EA/g1,=0.0,

bg/b1=1.0 Ca/b1=0-0).
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When v, is equal to v.,, the three critical loads
Per, 1 and p, are all equal. If v, is over v,,, p;
can not be obtained.

The results of the above calculations are shown
in Figs. 2.4--,2.9. From those results the follow-
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Fig. 2.5 Buckling displacements versus dead load
(EA/# 1,=0.0, by/6,=1.0, Co/b;=0.0).
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Fig. 2.6 Effect of initial imperfection on critical
loads (EA/¢1,=0.0, by/b,=1.0).
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Fig. 2.8 Effect of stiffness of apparatus on critical
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Fig. 2.9 Effect of stiffness of apparatus on
displacement of lower buckling.
ing considerations follow :

1) per and p; are in proportion to ¢*, where =
is near to 2/3 for b,/b,=1.0;

2) v, and v; are in proportion to ¢¥, where y
is near to 1/3 for b,/b,=1.0;

3) Though the initial imperfection has little
effect on p; if it is less than a certain value, it
diminishes p, very much;

4) The unsymmetrical buckling mode is more
likely to occur than symmetrical one;

5) pcr and p; decrease and wv; increases with
decreasing stiffness of apparatus.

HI. SNAP-THROUGH BUCKLING OF
BLOCKS OF RECTANGULAR PRISM

The system of blocks of rectangular prisms is an
idealized mode! of the pavement with joints. The
actual boundary conditions are supposed to have
intermediate characteristics between this system and
the pin jointed link which was treated in chapter II.

(1) Fundamental equations

The system of the blocks is composed of two
blocks of different lengths and a spring as shown
in Fig. 3.1. Each block has infinite bending stif-
fness and the buckled blocks have such geometrical
characteristics as shown in Fig. 3.1.

The compressive stress resultants of the buckled

Kawaguchi :

Fig. 3.1 System of blocks of rectangular prisms of
which bending stiffness is infinitive. &,, &,
d,, d,, e, and e, are lengths before buckling.

blocks are determined from the equilibrium as in

. The horizontal reaction after buckling denoted

by H, is derived from momentum equilibrium of

the left block :

- 2@
c/b,—d/b,
The compressive stress resultants after buckling

are obtained by neglecting the components of R,

and R,.

P, =H,cos f,, Pu=H,C08 Byrerrereeee 3-2)

The compatibility equation is derived as follows:

by +b,— (P—H,)/p=d(sin §,+sin §,)
+b, {14+ (P—P,)/EA}cos 3,
+b, {1+ (P—Pg,)EA}cos Byeeveeeene (3-3)
From the above equations, the fundamental equa-
tion is obtained in the nondimensional form :
rv(w—2d) +2q/(v—d)=p
Pa=2q/(v—d)
d=d/b,

If dis equal to zero, eq. (3~4) is equal to eq.
(2-6), which is concerned with the link without
initial imperfection.

As a next step, the total potential energies before
and after buckling are to be derived. They consist
of the strain energies of the blocks and the spring
of apparatus and the potential energy of the dead

H,=— 1 i 3-1)

weight.
u=a,p* }

ua:alpaz+a2qv
(2) Energy consideration

As in case of the link, it is necessary to consider
the energy change of buckling blocks. From
those considerations the buckling criterion may
be derived.

The following data are used for numerical calcu-
lations :

a,=0.5(1+b,/b)) =a,

This means that there is no spring effect of ap-
paratus, both of blocks have the same density and
the centers of gravity are at the center of each
block.

For g-value, 107, 10~°%, 10~ are used. The value
for concrete pavements is between 10-¢ and 10~°.

When ¢ is small or 4 is large, p—v curve may

sink below v-axis as shown in Fig..3.2(b). In this
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Fig. 3.2 Equilibrium equation of buckled system
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Fig. 3.3 Potential energy of the system of blocks
versus displacement.

case the extreme p(=p.,) is negative. The poten-
tial energy reaches an inflection point at this pg,.
Then if p., is negative, the energy curve has not
any inflection point, because the compressive force
must be positive.

The case of positive p., is shown in Fig. 3.3.
It is observed that this potential curve of buckling
blocks has essentially the same characteristics as
one of the buckling link (Fig. 2.3). When pis
smaller than p.,, the curve has not any extreme
value. If p is equal to p.,, it has an inflection
point The curve may not have two extreme points
till p increases over p,,. The curve has stable
equilibrium state at the extreme point of larger dis-
placement, but the energy of the system without
displacement (v=w,) is less than the one of this
equilibrium states, if p is not enough large. This
is shown in Fig. 3.3 for p=1.5p,. Then the
blocks do not buckle for 1.5 p,,. For larger com-
pressive force, for example 2.0p.,, « increases
above u, and the system may buckle, if it can go
over the energy peak with a kind of excitation.
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This is the equal energy criteria of snap-through
buckling. It is important that the energy is also
minimum at v=0 and the state of no displacement
is stable. The upper limit or the true critical load
can not be obtained.

The energy curves for negative p., change more
steeply than the curves for positive p.,. The energy
curves for unsymmetrical blocks are steeper than
those for symmetrical blocks. And they change in
high-pitch according to increasing relative thickness

of blocks.
(3) Calculation of the critical loads

From the above considerations the critical loads
are obtained by the same methods used in . The
lower limit of the buckling load is calculated from
the condition that eq. (3-4) has any non-trivial
solution. As shown in Fig. 3.2, v must be greater

than d. The extreme point is calculated :

%:7'@11—2 d)~1g/(v—d)?=0
The critical displacement wv., is obtained;
Vep=d+ (A2 7) Peeeiveiiniiiniinsiiniians (3-6)

By introducing v, into (3-4), the lower limit of
the buckling load p., is derived;
Per=7Ver (Ver—2 d)-+2 Q/<vcr*d) """" 3D
The difference of the potential energy before and
after buckling is denoted by 4.
A5=0, (PP = Pa®) — @0 -e-evreveresinsninsnns (3-8)
The lower buckling displacement v; is obtained
from the equal energy criterion :

This algebraic equation is to be solved numeri-
cally. Then the lower buckling load is

pr=rog(—2d)+2q/(oy—d)eeeeeeen (3-10)
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Fig. 3.4 Lower buckling load (EA/¢1,=0, b,/b,=1.0).
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The upper limit p, can not be obtain without
initial imperfection.

The results of calculations are shown in Fig. 3.4,
<+, 3.7. From those figures following considera-
tions follow :

1) The lower buckling load of the block system
is rather larger than one of the link system. p; is
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Fig. 3.5 Buckling displacement versus dead load
(EA/e 1,=0, byb,=1.0).
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almost in proportion to ¢*, where n is about 0.5.
2) The buckling displacement is very large com-
paring with one of the linked blocks.
3) The symmetrical system and the unsymmetri-
cal have nearly equal lower buckling load.

1IV. EXPERIMENTS

Experiments were carried out in order to verify
the numerical calculations. In the experiments
wood blocks and steel edges were used. As shown
in Fig. 4.1, each rectangular prism of wood had a
knife edge or a flat edge. A knife edge of a block
and a flat edge of the next block constructed a
hinged joint. Two flat edges contacting each other
were assembled into the blocks mentioned in 1.

X
(¢ a2 wood
e 0 30°
B &

£e
o
&
&

305

A:l005 , B:500, C:352
(cm)

Fig. 4.1 Experimented wood block.

Blocks were 3.05cm thick and 12.0cm wide.
The lengths of the blocks of wood part were 98.0
cm, 48.0cm and 33.0cm and they were called A-
type, B-type and C-type in the order of length.
Young’s modulus of elasticity of wood was meas-
ured 1.2x10°%kg/cm? by bending test. The wood
was sufficiently elastic. Weights of specimens were
1716 g for A,, 1943 g for A,, 1114g for B, and B,,
860g for C,, C, and C,. The center of gravity of
each block was nearly at the center of each block.

The experimental apparatus was the same one
used before”. The compressive force was applied
with an oil jack and the force was measured with
a ring dynamometer. The experiments were con-
ducted for many cases : various combinations of A,
B and C-blocks, different orders of those blocks
and some cases with turned over blocks.

Photos 2, 3, 4, 5 and 6 show the experimented

. . -
Photo 2 Bending deflection of A-A link induced
by eccentric compression.
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specimens. Photo 2 shows a bending blocks of
linked A-A system, which was compressed at 1820
kg and could no longer be stressed on the threat
of bending buckling. In this case so called Euler
buckling load of strut of the block with hinged
boundary condition was about 3250kg. Then the
bending deflection was considered to be induced by
eccentric compression.

Photo 3 shows a buckling hinged C-C system of
blocks. This picture was taken with a stroboscope.
A contact switch and wire can be seen at the left
of the photo.

Photo 4 shows one of the buckling C-B systems.
The blowup occurred at compressive force of 256

Photo 4 Buckling C-B system at compressive force
of 256 kg.

Photo 5 C-B system which blowupped violently
at 2000 kg.
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Photo 6§ Extremely violent buckling of C-C type

with only flat edges.
kg. The stroboscope flashed a-little bit after buckl-
ing, then the two blocks had been already apart at
the top of peak. Photo 5 is the other case of a
buckled C-B system which blowed up violently at
2000kg. When the system resisted large compres-
sive force, the buckling occurred violently and the
relatively light wood blocks fled off. On the other
hand the system rised quietly for small buckling
load.

The above mentioned experiments were carried
The block systems with
only flat edges treated in Il were too strong to
buckle experimentally. Photo 6 shows such ex-
tremely violent buckling of C-C type. Wood
screws, which set the edges to wood blocks, were
subjected to tensile forces and then became loose
at buckling. Consequently accurate experimental
results could not be obtained. Therefore in this

out for hinged blocks.

chapter only hinged blocks were treated

The knife edges were not attached ideally at the
centers of the sections of blocks, but they were
shifted up or down vertically or they were attached
inclined. The eccentricities of knife edges were
measured 0.5mm at maximum. And the relative
eccentricity® between one joint and the other could
be supposed to consist of each imperfection of
edges and apparatus. Maximum relative imperfec-
tions were supposed 0.64 mm for A-A type, 0.31
mm for B-B, 0.78 mm for A-B, 0.78 mm for A-C,
0.64mm for B-C, 0.47mm for C-C, and 0.50 mm
for apparatus respectively.

The spring of the apparatus consisted of the wood
blocks which remained level without buckling, and
the ring dynamometer which had spring constant of
1.37x 10'kg/cm.

The theoretical values of p; and p,, which were
calculated in consideration of the above imperfec-
tions and the spring constant, are shown in Fig. 4.
2 in comparison with the experimental results. The
experimental results scattered very remarkablly. It
was considered that the initial imperfections affec-
ted the buckling load very much. Although all of
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Fig. 4.2 Experimental buckling loads put down in order of experiments.

P, were calculated in consideration

of initial imperfection; 1.14 mm for A-A and B-C, 0.8l mm for B-B, 1.28 mm for A-B and A-C,
0.97 mm for C-C. There were some experimental results below the calculated P, for B~A-B, A-C
and C-C-C, however all of them were above P;.

the results were above the calculated p;, there were
some which were below the calculated upper
buckling load.

In order to observe effectiveness of the initial im-
the link of B-B type was tested for
given imperfection.

perfection,
Those imperfections were in-
troduced by wedges of known thicknesses which
were inserted under the link. Those results are
shown in Fig. 4.3. It is seen that the upper bucki-
ing load p, is the most valuable in case of imper-
fections and the lower buckling load is also mean-
ingful for vy<v,,.

1000
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: |
£ oo _ R\*
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S R
S
m "
10
00005 000! 0005 0Ot 005
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Fig. 4.3 Effect of initial imperfection of buckling
load. Theoretical curves ane experimental
results.

V. CONCLUSIONS

Statical systems of linked blocks or rectangular
prisms, which were assumed idealized models of the
pavement with joints, were studied experimentally
as well as theoretically.

Buckling phenomena of those compressed systems
were snap-through. As for the snap-through buckl-
ing of the systems, the following conclusions are
derivde :

1) The lower buckling load derived by equal
energy criterion is always lower than the experi-
mental buckling load ;

2) The upper buckling load is calculated for the
linked system with initial imperfection. The system
has bifurcation phenomena and jumps at p=p,;

3) The initial imperfections slightly decrease the
lower buckling load, but they remarkabily reduce
the experimented buckling load and the theoretical
upper buckling load p,. This p, is meaningful for
the system with initial imperfection ;

4) Unsymmetrical buckling mode is more likely
to occur than symmetrical one;

5) Systems of rectangular prisms are more resis-
tive to buckling than linked blocks.
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NOTATION

b,, b,=horizontal lengths of blocks;
c=distance from level to buckled state;
co=1nitial imperfection of link;
d=depth of blocks or the ratio of d and b, ;
d,, d,, e, ,e,=distances from centers of gravity to
ends of blocks (see Fig. 2.1)
1,, l,=lengths of bolcks;
? [)a=P1/EA, Pu/EA;
g=Q,/EA;
Pers P Pu=Pcr/EAa PI/EA’ Pu/EA 3
u, ug=U/EAL, U,/EAL;
v, v‘J:C/bl? Co/b1§
EA=stiffness of block;
H, H,=horizontal force before and after buckling
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respectively ;
P, P,, P,,, P,,=compressive stress resultants be-
fore and after buckling ;
P,,=lower limit of the buckling load;
P;=lower buckling load;
P,=upper buckling load;
U, U,=total potential energy before and after
buckling respectively ;
Bi=sin~'c/l;;
d=u—u,;
7, A=nondimensional characteristic terms of the
system (see eq. 2-5) ; and
#=spring stiffness of apparatus (kg/em).
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