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OUT-OF-PLANE BUCKLING OF SOLID RIB ARCHES
BRACED WITH TRANSVERSE BARS

Tatsuro SAKIMOTO* and Yoshio NAMITA**

SYNOPSIS

The out-of-plane buckling of a circular arch is
studied. The arch is composed of two main ribs
braced with transverse bars and is subjected to
uniformly distributed radial forces (see Fig. 1).
The analysis is carried out by means of transfer
matrix method and both the field matrix of arched
rod and point matrix are presented. Attention is
given to the influences of the flexural rigidity, the
number and the location of bracing bars on the
buckling strength of arches. Buckling coefficients
for various types of arch are calculated by trial
and error method. Useful suggestions about the
bracing method are obtained from the results of
computations. The theoretical analysis is followed
by model tests in order to verify the results of
computation.

1. INTRODUCTION

The out-of-plane buckling of arches means, in
this paper, an elastic buckling which occurs with
both lateral flexure and torsion
under mainly axial thrust. As is well known, the
lateral-torsional buckling is one of dominant insta-
bility problems of slender arch bridges. In order

simultaneously

to design a slender arch bridge as an economical
and safe structure, it is necessary to give it enough
lateral stability. In ordinary arch bridges of parallel
double arches, the two arched ribs are usually
braced either with a truss or with transverse bars
in order to give them a sufficient lateral rigidity.
These bracings will be more effective for the dou-
ble arches which are not stable when considered
separately.

1. Ostlund® and G. Wistlund® investigated late-
ral stability of bridge arches braced with transverse
bars in comparison with the lateral buckling of
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straight bars braced with battens. Various factors
about the transverse bars are discussed and many
important qualities are reported. The equation for
the deformation of the arch, hewever, is not des-
cribed with enough strictness.

S. Kuranishi? studied the lateral-torsional buc-
kling of two-hinge circular arch bridges, composed
of two main arched girders, cross beams and lateral
bracing, loaded by uniformly distributed vertical
forces. Buckling coefficients of arches with flexible
cross bars are computed by means of strain energy
method. Besides, a reduction factor for torsional
rigidity of the main arched girder due to the flexi-
bility of transverse bars are obtained, but effects
due to discontinuity of cross bars are not conside-
red.

One of the authors" presented a fundamental
equation for deformation of a curved rod and em-
ployed it to an analysis of out-of-plane buckling
of single arch. In this paper, employing transfer
matrix method to this fundamental equation, the
authors describe the out-of-plane buckling of double
arches braced with transverse bars. By means of
this method, the buckling problem of double arches
braced with arbitrary number of transverse bars in
arbitrary location can be analyzed.

2. THEORETICAL STUDY

(1) Assumptions

A part of an arch cut off by two adjacent points
will be called an element of arch, and the displace-
ments of the arches are described by the position
of the centroids of their cross sections. The funda-
mental equations and extended formulations are
derived on the following assumptions and idealiza-
tions.

1) The cross section of arched rib is bisymmetri-
cal and uniform within each element. The arch of
nonuniform cross section may be analyzed after
dividing it into uniform elements of adequate leng-
th. 2) The warping rigidity and the effect of polar
moment of inertia of arched ribs are disregarded.
3) Centroidal axes of the arches are inextensible.
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(b) Section t-t

(2) Double arches with transverse bars

Fig. 1 General view

4) Uniformly distributed radial forces, p, are loa-
ded at the centroids of cross sections of arched
ribs. 5) The forces do not change their directions
during the process of buckling (see Fig. 1 (b)).
6) The connection between arched ribs and trans-
verse bars are completely rigid. 7) Influence of
shear forces of transverse bars upon the buckling
load is disregarded.

(2) Fundamental Equation and its Solution

Through consideration of an equilibrium of stress
resultants and external forces acting on the i-th
element of arched rib, following simultaneous diffe-
rential equations with respect to the lateral defle-
ction, ¢, and the torsional angle of cross section,
5, can be derived (see Ref. 1) Eq. (30)).

That is,
a’ A+ (Qy—mp) e’ — (1+7n,~)ﬂ”=0} (1)
(L+mpe”+m;B” —F=0,
where 2;=pR}/EJ;, m;=GI;/EJ; and a prime supe-
rscript denotes one differentiation with respect to
angular coordinate, 6. The symbols EJ; and GI;
are flexural rigidity about out-of-plane bending and
torsional rigidity of the i—th element, respectively.
General solutions of these governing equations take
different forms in compliance with the sign of 1—
A;/m; and are given as follows :
for 1—2;/m;<<0,

. -2——"
gz — kl.z (C, cosh ky;0+C; sin £,;6)
12

T (1 m)
. 2
- *(%% (Cy cos k,;0+C, sin ky:0)
g z 27
+C,0+C;
B=C, cosh k,;6-+C,sinh %,;6 +C, cos &,;0
+C, sin ky; 0,

in which
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1= pR? = GI, _EJ;
—a— = EJ, 0 "TEL MTE
GI;
I R et PPN
B and v; Gl (4)
(The solution for 1—2;/m;>>0 can be obtai-
ned similarly, and omitted here.)
o The symbols EJ, and GI, denote the fle-

xural rigidity and torsional rigidity of arched

rib at the arch crown, respectively. Out-of-

plane bending moment, M, torsional moment,

T, and shear force directed outwards the arch
plane, @, are expressed in terms of displacements
as follows :

EJ; . ., _GL ., .,
M_T<a 8, T————'—R (a'+ 8"

EJ; . ... ., GI; .,
Q——*—R‘r(d —R)+ & (' +5).

Substituting Eq. (2) into Eq. (58), and denoting
the non-dimensional quantities, TR/GI,, MR/GI,
and QRYGI, by the symbols T, M and @, respe-
ctively, Eq. (5) yields for 1—2;/m;<<0,

2
—’im—% (C, cosh &,8+C, sinh £,,0)
kit —1

m;+1
—y, 1+k152

f ki (L4my)

+u'-*--———1-k2iz
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-.L-V{Cs

(k1i2+1)2
k;,‘(l—l—ﬂli)
Ly (kyi*—1)°
T ki (L my)
+v;C;.

M=—Vi

+IJZ'

(C, cos k,;0+C, sin k,;0)

S

(C, sinh %,;6 + C, cosh £,;0)

(C; kyi0—~C, sinh cosh k,;8)

Q=y; (C, sinh &,;6 + C, cosh %,;6)

(C, sin ky;6 —C, cos k,;0)

(3) Derivation of Field Matrix

First, let us take «, a’, 8, T, M and @ as the
elements of state vector Z;. That is,

Zi={a, «',B, T, M’ Q‘}‘ ........................
in column vector form. This state vector, Z;, can be
related to the arbitrary constant, C;, in matrix form
as follows :

Z;(9)=B;(9)-C.
Hence, the state vector of intersection points i—1
and ¢ will be expressed as

Z;_1=B;(0) -C

and
Z;=B;#;-C.
Solving Eq. (9) with respect to C and substituting
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it into Eq. (10) yields

ZE=F Z; B i (1D
in which
Fi=B;(0,) Bi1(0), ooeveererreressnecrnnunes (12)

and the subscripts L and R denote the left-hand
side and the right-hand side of each intersection
point, respectively. For the convenience of expla-
nation, let us express the field matrix in simple
notations of square submatrices of order 3 as foll-
ows :

In the above discussion, attention is paid to one of
the double ribs. Then,
quantities of both rib~-T and rib-T simultaneously,

in order to transfer the

let us take the column vector,
Zi={ay, 051 » 81, ¢, ¢n’s B, T,

as the state vector of the intersection point i,
where the symbols with the subscripts T and I
indicate the quantities with respect to rib-I and
rib-1I, respectively. The overall relation between
the state vector of the intérsection point ¢ and that
of the intersection point i—1 will be given by
ZL=F;(0)-Z;.,®

where

--(16)

(4) Derivation of Point Matrix

First of all, let us imagine that the transverse
bars are connected to the arched rib as one of the
principal axes of transverse bar is always horizontal
(see Fig. 2(c)) and only the flexural rigidity with

b) Section t-
M:’d; (b) Section -t

horizontal line o)

Fig. 2 Equilibrium around an #-th transverse
bar (Type-V)

respect to the horizontal principal axis is considered
(let us call Type-V). Considering an arbitrary
transverse bar cut off like what illustrated in Fig.
2, the relation between the flexural moments of
transverse bar, M4 and Mp, and the deformations
of arched rib, ¢’ and 8, is shown as

. 4EJ; 2EJ;
My _ a a
[MB}_ _2EJ; 4EJ;
a a
B
sinf; —cosf; 0 0 %y’
'[ 0 0 sinﬁi —cos(;i:l. B
ay’
.......................................... an

in which the symbols a, EJ; and 8; denote the
distance between rib-I and rib-1I, flexural rigidity
of i-th transverse bar and the angle between a
horizontal line and the radius A—0, respectively.
The equilibrium equatxons around the point A are
MiR=M L~ N ,cosb;,
TiR=T L4 45inb;
and Q1R=Q1L~
As for the rib-1I, in the same manner,
brium equations are :
MnRzMnL+MBcos§;, l
TuR=TyE—Mpgsinf; L OO (19)
and QuRZQnL. [
The deformations «, ¢’ and A will hold continuity
from the left-hand side to the right-hand side of
the intersection point 7. Then, substituting Eq. (17)
into Egs. (18) and (19), and introducing non-dime-
nsional quantity, r;=EJ;/GI,+R/a, yield
ZR=P()ZE, coovrerienieniieeiienes 20)
where

the equili-

J T T [t N—-———-—— O @D
z l) 0 X 0 Y 1

0 0 1 0

000000 1

0 . 0 1
oY oX

L000000 1
2r,~sinf5,~ ~
—2r;sinf; cos 0;

47,52 0; I
—4 7;sin 0 cos§;

By the way, when the transverse bar is connected
to the arched rib ars one of the principal axes of
transverse bar is perpendicular to the longitudinal
axis of arched rib (let us call Type-P), the subm-
atrices, X and Y, of Eq. (21) will be obtained

-2 risinéigoséi
27r;cos?f;
Y= ‘:——4r,sm0 cosﬁ
4 7; cos?

X=
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Fig. 3 Transverse bar of Type-P

as follows after a similar deduction shown above
(see Fig. 3). In this case, both the flexural rigidity
with respect to z-axis, EJ,, and that with respect
to y-axis, Ejy, are considered. That is,

[0 2kr, 0 4&r,
X‘[zry o’ | amd T= 4r, 0 17
.......................................... (23)
where
. (Ej;v)i _@_ Jp— _‘Lf_
(ry),-———c-ﬁo———- - and x,—<jy>i. (24)

(5) General Procedure of Transfer Matrix

Substituting Eq. (15) into Eq. (20) yields

ZR=PjFioZ; B (25)
Repeating this procedure from point to point, the
state vector of the right-hand end of the arch can
be related to that of the left-hand end of the arch.
That is,

Zt=F, P, ,--F; P, +F;_, -

P F, ZR=TZ R (26)

The matrixT takes usually a square matrix form of
order 12 and each element contains the buckling
coefficient, 2, as an unknown variable.

(6) Boundary Conditions and Coefficient
Determinant

Two sorts of boundary conditions are considered.
First, when the both arch ends are rigidly fixed,
the boundary conditions are

at 0=0, ¢;=c'=f;=ag=cg’=Fr=0 }
and at 8=0,, ¢i=c¢ ;' =f;=cg=ay’'=F1=0.

Substituting Eq. (27) into Eq. (26) yields six hom-

ogeneous equations. For non-trivial solution of

these equations, the determinant of the coefficients
must be zero. Hence, the buckling condition is
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[117 tlvs tlyg tl,lo tl,ll tlylz
Lo,r L2,s Loss 2,10 Lain1 Zoone
D(X): t3,7 t318 t3v9 tSle t3;ll t3v12 :0“‘<28)
1417 t418 2419 t4vlo t4,1! t(»IZ
t517 t5r8 t5:9 tSylo tSyll t5,12
[517 tG,S tﬁ,g tG,lO tG;ll ZG)!Z
The lowest positive value satisfying this condition
is the critical value of 1. Next, when the both arch
ends are hinged, the boundary conditions are
at =0, ¢;=pF;=ag=f1=0, M;:MUZO}
and at 6=0,, ¢1=81=ay=p1=0, M =My=0

Substituting Eq. (29) into Eq. (26), in the same
manner shown above, yields the buckling condition
of this case.

(1) Numerical Procedure and Some Proble-
ms

The solution of Eq. (28) is obtained by means
of trial and error .method as a value of 2; which
satisfies the relation D(1;)+D(;442)<0, where
4% is the buckling-coefficient increment. As for the
magnitude of 41, the larger the better for shorte-
ning the computation time, but a large increment
involves a risk of failing to catch the positive-mini-
mum solution. Since even a small increment, 42,
will produce a large and sharp fluctuation of D(2),
particularly in the region near the solution, special
attention must be paid in determining the magni-
tude of 42. Further, with respect to a certain com-
bination of the values, m and 2, the value of D(2)
may fail to vanish at where it must be zero, owing
to the accumulated errors and lack of significant
digits. This deficiency was conquered by tracing
the value of D(2) and the missing solutions were
presumed from the shape of the curve of D(2).

Table 1 Connecting direction of transverse bar
Type-V I One ui principal axes is vertical and
" only Jy is considered.

~
| rERR
t . a

One of principal axes is perpendicular
I to the centroidal axis of arched rib,
and both Jx and Jy are considered.

ERLR yod (EJR
ora Xy o Fera

Type—L \é ’ T =0 in Trpe-P,
| RERR iy,
| beGla » ¥=1e=0
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Fig. 4 Buckling coefficient for three transverse bars
(Fixed end)
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Fig. 5 Buckling coefficient for six transverse bars
(Fixed end)
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Fig. 8 Buckling coefficient for three transverse
bars (Hinged end)

(8) Results and Consideration

Several numerical examples are shown below.
Since the symmetrical buckling of first mode will
give the smallest critical value, all computations
were performed it. In these
examples, the cross sections of the main ribs are
constant through the arch span and all the transverse
bars of each intersection point have same cross
section, and further central angle, 6,, of the arch
Accordingly, v;=u;=1

about numerical

is right angle for all cases.

V-3A-F

13

Hinged end

Fixed end

(@) m=0

'}
 Olmax

B, ol e, Y= Bl

Fig. 7 Shape of buckling mode of single
arch ’

and r; (i=1, 2,---)=r;. Computation cases
are expressed as V-3 A-H or P-6 B-F, etc..
The meaning of the first letter is explained
in Table 1. Type-P and Type-L are imagi-
ned to repesent the transverse bars of actual
arch bridges which mainly resist to torsion
of the arched ribsand lateral bracings of
actual arch bridges which resist only to late-
ral bending of the arched ribs, respecti vely.
The second letters mean the number and the
manner of arrangement of the transverse bars. The
last letter means the end condition of arches, fixed
or hinged. In the figures, the buckling coefficient,
A, is defined as pRL*/EJ,, where L is arc-length of
the arch. The magnitude of m will be, in general,

(a) Fixed end (m=00}

i \\ vatue of ip!

— Type-V(K=50)
—-— Type-P (r,:o,t;ﬁso)
i I

0
] 9, iR — L
g ot ot st A
(b) Hinged end ( m=0.5) Y
o | X
7 —  Type-V(ksi0) I,
a5 / W4
)\rI s -\ —_= Type-L(fy'l@:'__, "\'\§ V
20 AN L
N s N value of 11
Ay
6.25 | _ _ a9
0
3t I —s L

Fig. 8 Influence of position of transverse bars
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from 0.1 to 1.0 for a closed cross section and from
0.1 to 10~* for a open cross section. In numerical
computation, digital computer (NEAC 2200-500) of
the computer center of Osaka Univ. was used.
Several discussions and characteristics about the
influences of the bracing bars on the buckling stre-
ngth are given below.

1) Flexural rigidities »; and r, (see Figs. 4 and
5)

From the nature of things, with the increase of
7:, the buckling coefficient, 2,, becomes large. For
7+—0, the ordinates of the curves, as it should,
approach the values of the buckling coefficients of
single arch. The influence of 7, is remarkable for
the small value of m. For example, the buckling
coefficeint of the case V-6B-F (m=0.01) attains
2.5 times of that of single arch. The limiting value
of 2, are given at about r;=1/m for all cases. There
is little difference between the influence of 7, and
that of r;. The 2, versus 7, curves of the case P~
3B-F(r,=0) practically coincide with those of case
V-3B-F, and so are not shown in the figure.

2) Number of transverse bars

The buckling strength becomes large with the
increase of the number of transverse bars, but the
magnitude of increase is not so considerable except
the case of m=0.01.

3) Arrangement of transverse bars

In Fig. 4, the influence of the arrangement is
not so remarkable except the case of m=0.01. In
the case of m=0.01, relative magnitude of the
ordinates of the curves is case-3 A>>case-3 C>>case-
3B. This result implies that the influence of the
arrangement have close relation to the shape of
buckling mode shown in Fig. 7 (note the magnitude
of 7 which is uniquely determined against a unique
value of m). In order to confirm this idea, the
buckling coefficient of arches braced with two tra-
nsverse bars in various positions were computed
and plotted at the each position of the transverse
bars. Tke curve showing influence of position of
the transverse bars upon 1, and the curve showing
the value of |8] (absolute value of the torsional
angle, 8) are similar in shape (Fig. 8(a)). In the
range of the large value of m, this influence does
not appear, because arched ribs of closed cross
secton will not show so large deformation in torsi-
on. As for the arches of hinged end (Fig. 6), the
influence of the arrangement occurs in the range of
large value of m (at the same time, large value of
7) and is relative to the magnitude of «’ of that
location (see Fig. 8(b)). Furthermore, Fig. 8 (b)
implies that the flexural rigidity, »,, near the arch
end improves the buckling strength of hinged-end
arches remarkably.

4) Flexural rigidity r, (see Fig. 9
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Fig. 9 Buckling coefficient of Type-L (Fixed end)

The influences of r, are illustrated in Fig. 9 as
the form of 2, versus r, curves. Through above
results.
Namely, since r, is directly relative to «’, the signi-

ficant differences of location appear in the range

discussion it is easy to interprete these

of large value of m (large value of r). The ordi-
nates of the case-3B whose side-transverse bars
are located at L/4 points, where the magnitude of
¢’ is maximum (see Fig. 7(d)), are quite larger
than those of other two cases. The limiting ordi-
nates are attained at about r,=100/m for all cases
of three transverse bars and at about r,=10/m for
all cases of six transverse bars.

5) End condition of arched ribs

The buckling strength of hinged-end arch reduces
remarkably. This fact implies that even a slight
loose of the fixed end may lead the arch bridges
to collapse. The practical significance of this obse-
rvation is obvious, since in actual arch bridges,
completely rigid supports are difficult, if not possi-
ble, to realize.

3. MODEL TEST

Several model tests were conducted and one of
them are shown below.

(1) Model Arch

Tested model arch is shown in Fig. 10. Both the
main ribs and the transverse bars are made of brass
and the model arches were assembled by means of
solder connection.

(2) Apparatus and Procedure of Experiment

Particular attention was paid in fitting up the
model arch not to produce initial lack of fit. The
end of the ribs were built-in to an steel plate
which is supported as to rotate freely about the
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axis perpendicular to the arch plane.

In order to prevent slipping and to Theoretical values Experimental values 35100
— s =
give full play to an arch action, the A | Pulk9gm) [R=2n,L(kg) | R (kg) I%=Ps{zm§'7.°)(kg) B (o)
ends of the arches were carefully fixed Model o ls00 | 79 1754 1400 1555 286
. . 1 di g -
against horizontal displacements. Since S.nglearch 3225| 6.20 1398

it is difficult to realize a distributed
radial load, group of vertical concen-
trated loads was applied in place of it. The loading
devices are shown in Photo 1. The piano wire were

8
1

[

i3
i

1.2

o LQ&.[ Eg LL;_ e

Main rib Transverse bar

b) Cross-sectional dimensions

[ et E (M tm) [6(*06m)] ™ |
{015898| 0.2 [107:10° J412510° [04g4)

S

wi (e}

) Geometrical configutation of model arch

Fig. 10 Model arch

Photo 2 Critical equili-
brium state at
P=1.35ton

Photo 1 Loading devices

Load P(ton}
—

o
&

e

E Lateral deflection ,u, at crown
—msm——ewm Torsional angle,p.at crown

( ~ex==-%--  Lateral bendiig strain at crown
—-e---¢-= Lateral bending strain at spring

[ =é-=-4- Bending strain of transverse bar

u

5 10 {mm)
0 o0t 002(radian) P
0 500 o000y ¢

Fig. 11 Load vs. deformation curves

Table 2 Theoretical and experimental buckling load

used as to follow the displacement outward the
arch plane without restraint, but the excentricity
of loading was inevitable because of the cross-secti-
onal shape of model arch. The loading rod was
pulled downward by a hydraulic jack. Model arch
was loaded gardually and carefully not to produce
disturbance.

(3) Results and Consideration

The ultimate load was estimated as P=1.40t from
the asymptote of the load-deformation curves. The
model arch in critical equilibrium state at P=1.35t
is shown in Photo 2. Test results are illustrated in
Fig. 11. These curves show the effects of initial
imperfection in lower range of loading, but to
avoid them was, actually, difficult. Both the buc-
kling load obtained from the theoretical analysis and
model test are shown in Table 2. The experimental
value shows about 90%-coincidence with the the-
oretical one.

4. CONCLUSIONS

The following conclusions will be drawn within
the scope of the given assumptions and idealizati-
ons :

1) Transfer matrix method was employed effec-
tively in obtaining the eigenvalue of the differential
equation governing the buckling of complicated
structures which consist of main systems and branch
systems.

2) Results of numerical computation about seve-
ral arches are illustrated as the curves of buckling
coefficient versus flexural rigidity of the transverse
bars.

3) The arrangement of the transverse bars are
in close relation to the shape of buckling mode of
corresponding single arch. To arrange the transve-
rse bars of large flexural rigidity at the location
where corresponding large deformations of the
arched ribs occurs is effective from the view point
of lateral stability. That may be, in other words,
to increase the total strain energy stored in the
transverse bars during the buckling deformation.

4) In order to interprete the relation between
the cross-sectional quantities of the arched rib and
the effects of transverse bars, the ratio, 7, of the
maximum value of the torsional angle, Amax, tO
that of lateral deflection angle, @na.x’ are quite
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important.

5) The location of the transverse bars are more
important than the number of them.

6) In order to increase the buckling strength of
the arch bridges as treated in this paper, to cons-
train the out-of-plane flexure of arched rib is much
more effective than to constrain the torsional defor-
mation of arched rib. In other words, lateral braci-
ngs which resist to the out-of-plane flexure may be
more effective than the transverse bars of Vierendeel
type.

7) A slight loose of the fixed end about the
out-of-plane rotation may lose the buckling strength
of the arch bridges practically.
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