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ABSTRACT

Many attempts have been made to evaluate the buckling loads of plates with
various support conditions to predict the strength of plate girders. These at-
temps have been based on the assumption that the deflections of webplates are
relatively small compared with the thickness of the webplates. Due to this as-
sumption, many inappropriate results have been obtained, and the current de-
sign practice of plate girders is still based on these results. For this reason,
many experimental investigations, and theoretical investigations based on the
large deflection theory of plates have been performed.

In this paper, a theoretical method of analysis of webplates with large de-
flections is proposed. A plate girder panel is simulated by an ideal mechanical
model consisting of a thin plate and four beams representing the webplate, two
vertical stiffeners, respectively. The loading is a general combination of bend-
ing moments and shearing stresses. A method of expanding the unknown dis-
placement components into polynomial series is employed with the magnitude of
load taken as the expansion parameter. The sets of linearized partial differen-
tial equations are then converted into sets of simultaneous linear algebraic equa-
tions by means of finite differences and numerically solved by a digital computer.

1. INTRODUCTION

Unlike columns, the existence of significant strength of plates in their post-
buckling range has been known as a fact. The first mathematical formulation
was undertaken by von Kdrman?® to account for the effect of large deflection of
plates. Skaloud and Donea® investigated the effect of residual stresses on the
post-buckling behavior of plates, in which it was indicated that the residual
stresses may sometimes result in a real prestressing effect in shear panels.
Stein®»® employed a method similar to a perturbation method in his analysis of
simply supported initially flat plates subjected to longitudinal compression and
to a uniform temperature rise, respectively. Mansfield made use of a method
similar to Stein’s in his analysis of a compressed square plate®.?,

On the other hand, an extensive experimental investigation on welded plate
girders was undertaken by Basler and the others®:,19:1b_ Ag a result, the con-
cepts of load carrying capacity were established. In a panel subjected to bend-
ing moment, some portion of webplate in the compression zone is assumed to
offer no resistence to the bending moment; whereas, in a shear panel, a diagonal
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tension field is assumed in such a way that the flanges do not provide the anchor
to this tension field.

The purpose of this study is to analyze the behavior of rectangular plate
girder panels subjected to the load beyond their buckling load, and to investigate
the significance of the buckling load in reference to their ultimate load. The
specific interests of the study include the effects of the initial deflection of web-
plates, the residual stresses, the rigidities of boundary members, and the yield
strength of steel.

11. PROPOSED ANALYSIS

Fig. 1 shows a plate girder panel system consisting of a rectangular web-
plate, two flanges and two vertical stiffeners. This panel system is assumed to
remain linearly elastic until the yield-
ing initiates.

uppey flange upper_flanqe . The proposed analysis requires
[ e BRI =~ e S = X -
solution of the displacement compo-
2 T nents u(x,y), v(x,y) and w(x,y) in
é‘ " ! webplate .l x-, y-, and z-directions, respectively.
— x=0 | x=a The kinematic indeterminacy of the
h . . system is six, of which three refer
i o Jover flange * to the displacement components u(x,
Yower flange 2 ) and o(x, y); while the other three
% | 7 refer to the displacement components
ot A o w(z, ). To eliminate the rigid body
left stiffener ) right stiffener motion, it is assumed for convenience
Tig. 1 Plate girder panel that
(0, 0)=u(0, b)=0,
v(0, 0)=0, 2.1)

w(0, 0)=w(0, b)=w(a, 0)=0.

The torsional buckling of the compression flange and the lateral buckling of
beam are not explicitly considered in this paper. Then, the flexural rigidities
of the boundary members about their strong axes are so large that it can be as-
sumed that

wss{x, Y)=0*  along all boundaries, 2.2)

where the subscript s refers to a length measured along the boundaries.
Similarly, due to the existence of the adjacent panels, the flexural rigidities
of stiffeners about their weak axes are so large that it can be assumed that

w2, y)=0%* along edges x=0 and x=a. (2.3)
Then, it follows from Eqgs. (2.1), (2.2) and (2.3) that

* Throughout this paper, (»;) and (-z;) refer to the first and second partial derivatives of
certain function with respect to a variable z, respectively, unless otherwise referred to.
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#(0, y)=0, and }

along all boundaries.
2.4)

w(xz, y)=0

Consequently, the girder panel shown
in Fig. 1 can be idealized and repre-
sented by a mechanical model shown
in Fig. 2.

The displacement can be repre-
sented by a vector with components
u, v and w. Let w, w,, w® and w*
designate the deflection due to load,
initial total deflection, initial elastic

Webplate

right stiffener

rollers

Fig. 2 Idealized model of a plate girder
panel.

deflection and initial inelastic deflec-
tion, respectively, then the total deflection, w7, is obtained by the following equa-
tion:

wl=wytw=w*+w+w. (2.5)

On the other hand, it is assumed that the initial in-plane displacement components
u#o and v are zero; hence

u’=y and '=v. (2.6)

Using the Lagrangean coordinate system assuming that w»# and v, the com-
ponents of the total strain as applied to thin plates with large deflection can be
expressed as follows:

T T —
€r vz Er &bz &z0  Epxo

T T 1=

Ey &by | = |8 €y |+ |&m o |, 2.7
-7 T —

Tey Toxy Tay  Tozy Tzyo  Joxyo

1
(ezo, Eyo, mo)=—2—(w§’z, wg'y, 27/00':::?/00'1/) ,

& &y D, 0 WoeD: u 0
& ey |=| 0 Dy woyDy v 0
Fay  Tozy Dy D. woezDy+woeyD: )lw 0
0 D w% 0

—2z|0 Dy WeT"“'%' wy 0|, and
0 2Dz 2waswy 0

wl=w®+w: Total elastic deflection,

where D., Dy, Dz, Dy, Dy are linear differential operators; for instance,

_ 9 _9_ 9 _9
D= Py D= " Dzy.ﬂaxay and D..= Py
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According to the Hooke’s law, the stress-strain relationship is given by the
following equations:

1 Y
Gz Obx 1—y? 12 &z Evx

v 1 -
Oy Toy =F 1—p? 1—p? 0 &y Evy . (2.8)
Tzy  Toxy 1 Tey  Yozy

0 0 2(1+v)

where subscript b refers to the plate bending.

Substitution of Eq. (2.7) into Eq. (2.8) results in the stress-displacement rela-
tionships.

Among several yield criteria, von Mises yield criterion is generally accepted
for steel; hence, this is used in predicting the initiation of yielding in this study.

If lateral loads are absent, the following equations of equilibrium are obtain-
ed in the domain of the webplate:

GrotTayy=0,
TapatGyy=0, 2.9
Plws = %(EZTDW +6,7 Dyy+ 271y Day)u™
where D=flexural rigidity of plate, and
h =thickness of plate.

Substitutions of Egs. (2.7) and (2.8) into Eq. (2.9) result in the following equa-
tions of equilibrium:

1 Y

0
Dy 0 Dy 1-t 1-? I D. 0 WezDz u
Y 1
0 Dy Dx 1—))2 1—).)2 0 1 0 D;l/ WO’yDy v
w»ﬁx w»f,y 2w€y 0 0 1 Dy D, WO'mDy‘I‘ WO’yDz w
2(1+v)
ws Oz 0 0
_1.. 2 i ,_D_ T__
+ 2 Wy -+ E Tyo - Eh 0 |wT=]0]. (2.10)
20z Wy Ty 7 0

Kirchhoff established two basic relationships for the interaction of the plate
element and an adjacent boundary member element. One relates the torsion of
the plate element to the bending of the boundary member element; while another
relates the bending of the plate element to the torsion of the boundary element.
From the mechanical model considered here, only the latter needs to be consider-
ed. For instance, the boundary conditions along x=0 are given as follows:
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we=0 and {(GJs+ ELvy)Dayy— D{(Des+vDyy)we” =0, 2.11)

where GJs; and [, refer to the torsional rigidity and the polar moment of inertia
of the left stiffener, respectively.

In general, two relationships can be obtained to designate the interaction of
the plate element with an adjacent boundary element. One refers to the longi-
dinal equilibrium of the boundary element, and the other refers to the transverse
equilibrium of the same element. For instance, letting ¢;’ denote the axial stress
in the compression flange,

h

o},x+A~f,?£y=o, and (Eiy' Duzes— Ay 05 Deet WTsyDayv=h5,”  along y=0,
(2.12)
and letting oy’ denote the axial stress in the right stiffener,
0§~x+Lffy=——Lf and oy =0 along x=a, (2.13)
As Ay

where Eiy’ refers to the flexural rigidity of the lower flange about its weak axis,
and A,’, As refer to the cross sectional areas of the tension flange, the right
stiffener, respectively.

Since no in-plane compressive loads act perpendicular to a boundary member,
the corresponding resultant force should vanish along the boundary. For instance,
along x=0:

b
h S o7 dy l0+Aj(7f | +As a7 | U=‘—0 . (2.14)
¢ x= =0 z=

The bending moment along x=a should be of a uniquely assigned value;
whereas, there exist no external bending moments acting along y=0 and y=b.
For instance, along r=a:

b
hg G:"ydy | —bAsor | =M | . (2.15)
0 =0 x=a x=a

Previous experimental results have shown
that the most common initial deflectional pat- e
tern is of one half wave in both x- and y-di- ’
rections. Furthermore, flanges and stiffeners
can be considered not to deform significantly
before loads are applied. Thus, the following
initial deflectional surface is assumed in this
paper:

2 2
wolx, y):A(l—cos ﬂ) <1——cos ﬂ) .
a b
(2.16)
Fig. 3 shows a typical residual in-plane Fig. 3 Typical resicual stress
stress distribution in a plate girder with flanges distribution caused by
continuously welded along the edges of the continuous longitudinal

webplate!®»1_ If vertical stiffeners are weld- welding.
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ed furthermore, the residual stress distribution is affected. The residual stress
used herein is mainly based on the one used in References 3. The residual stress
components are assumed in the following form:

com bl ST sl
ow=—ta {1_12@:)2}{ S 2
sS4 )

~

b2

where

x’:x—~la and y’=y—-1—b, and ov=0oyp | .
2 2 &' =a/2
¥’ =0
Fig. 4 shows typical load-displacement curves of webplates with initial deflec-
tions subjected to in-plane loads!¥:1», An observation that the displacement com-
ponents may be well expressed in polynomial
series throughout the loading process with first,
second and third powers in terms of the magni-
tude of load suggests the following forms of
solutions:

Load, P

Load- W curve

u(z, y)"‘ u"”(x y)d*,

v(a, y>=§0 vz, )4, and (2.18)

o total deflection: wT= Wt W
w(x, y)— >, W, Y4~
Load, P
Substitutions of Eq. (2.18) into the equations
of equilibrium, Eq. (2.10), and the boundary
conditions using the stress-displacement rela-
tionships result in several sets of linearized
Load- u, v curve partial differential equations expressed in terms
of polynomial series of 4. The terms corre-
sponding to the first power may be identified
as those which can be considered in the usual
small deflection theory of plates. The terms
b ane T spTacement corresponding to the second power will be
found to introduce the first approximation to
the large deflection of plates. Solutions of ad-
ditional higher power will give the second and
then higher approximations. In this paper, consideration will be limited only up
to the third power because of great complexity involved in the solution process
for the powers higher than the third. Besides, it must be kept in mind that
the consideration of higher power terms does not guarantee greater accuracy.

Fig. 4 Typical load-displace-
ment curves.
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Fig. 5 illustrates a load-deflection curve approximated segmentwise. This
curve is seen divided into several intervals*. Let points P, P, ---, P, designate
the partition points of the curve into
intervals i, I, -+, In. Also, let 4, 4,
.-+, 4 designate the loads correspond- Load,
ing to points Py, Py, .-+, Ps. Then, the
procedure of solving the given problem |, |....
can be summarized as follows:

In the first interval, Ii: o, {77

1. Solve the zero order equation
to find w®, then evaluate the zero , |----
order bending stress components, oz,
Ovyo and Tpzyo,

2. Solve the first order equations
to find «#V, v and w®, then evaluate
the stress components such as ¢;?,
5,0, a5 and 7he,

3. Solve the second order equa- .
tions to find #®, v and w®, then
evaluate the stress components such

Multiple Intervals
of Approximation

By e

as Ez(z’, %5521/) and 0'221,), W Total Deflection W'
4. Solve the third order equations Fig. 5 Segmentwise approximation of

to fine %, v and w®, then evaluate the load-deflection curve.
the third order stress components,

5. Obtain the total displacements »7, v* and w?, and the total stress components
6.7, 6,7, iy, Giws Gby, Thsy by substituting the value of load level, 4, each time
evaluating von Mises yield comparison stresses and principal stresses,

6. Set wo=u?, vi=v" and wi=w’, Gu="7, C=04", Tep =7y, aNd Com=01y,
o =04y, and Teayo =Ty, at d=4i.

In intervals b, L, - - -, In:

7. Repeat the procedures 2 through 6 where in each new interval, the load
parameter is newly defined by §:2=4-4;-1 in interval I;, in which & is a small
positive number such that 0=<& <min (Jw® {/{w®|). Repeat this procedure until the
terminal point P, is reached.

In the average edge shearing stress, 7, is taken as the load parameter, then,
4, its nondimensionalized form, can be conveniently defined by the following ex-
pression:

A_‘L’

h »
Oyw

(2.19)

where ovw refers to the yield strength of webplate. This expansion parameter
is also used in the case of combined bending and shear.

If the externally applied bending moment, M, is taken as the load parameter,
then, 4, its nondimensionalized form, can be conveniently defined by the follow-
ing expression:

* Let these intervals be called multiple intervals of approximation.
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M

~ orwha® *

(2.20)

If bending moment and shearing force act simultaneously, the following para-
meter is used to designate the interaction between them:

bM |

0:7?7—;1? . (2.21)

III. NUMERICAL SOLUTIONS BY MEANS OF
FINITE DIFFERENCES

It is extremely difficult to solve the problem analytically mainly because the
boundary conditions are quite sophisticated. For this reason, each set of lineariz-
ed equations are numerically solved by the use of finite difference method. The
mechanical model illustrated in Fig. 2 is converted into sets of discrete points as
shown in Figs. 6(a) through 6(c). In these figures, NV designates the size of mesh
point system, or the number of mesh lines in one direction inside the domain of
the webplate. It is to be noted that three unknowns, namely, u(x, v), v(x, ¥) and
w(x, y) correspond to one grid point. It is seen that the total number of un-
knowns on this N x N mesh point system is

3N*+TN-T7.

The computer programs used herein consist of a main program and 12 sub-
routine subprograms. A set of simultaneous algebraic equations are repeatedly
solved for each order of approximation by a library subroutine subprogram based
on the Gaussian Elimination Method.

The input parameters to the computer programs consist of the following:

1. index, designating the type of loading, namely, either shear, bending or
the combination of the two,

2N+2 N+4D NIsN-4 N24QN-2 2+ 3843 anss 1 NZa2N-3 NCHdN-T
- @ : >
? : : (+h,=N%435-2)
N o1 I NN-5 NAN-Z W2 N AN BNpz aNph c NAHING N NCZ N e
: }
! !
: | D, N .
N 2N 32: WRN-6 NegN-d NERON-3 ot ofn-1 e b anfss 2 NP ones NP ane3 N fan-2
: R STV (OUVUTITS UUIUTINL RN CUUU | COR
: Ioe 2 2
: ; 2 Mz s ez oS-t N Rener W ez
3 N+ 2N+6: N2k2 N2+ N2 +2n11 3 s )
N3 anes: N2k3 M-l N?feow T R L L L e
M 2 { o
] 4 PTTURENT) PRI VIPSR] JOWEN ; L. —aue] 3 —an b5 N e ln-3 N hon-1 w2+ fa:
" S L O ni+r a2 anfea  nPefnea N fanez
O - - 5
Fig. 6(a) Generalized mesh point system Fig. 6(b) Generalized mesh point system

for u(x, y). for v(x, y).



A Method of Analysis of Webplates with Large Deflections 101

o2 Wz D NZN-2 e 2. aspect ratio of .panel: i=b/a,
: ') 3. slenderness ratio of webplate: 8
: =alh,
j‘ — S —0 4, parameters designating the cross
: W sectional areas of
AP D N S € N2-M3 N2 upper and lower flanges, ¢, and
....................... ¢, respectively, and
""" 0 B R [ W left and right stiffeners, ¢s and
: ¢s', respectively,
! 5. parameters designating the tor-
N 2N N2-2f N il N2-N-1 .
1 . sional rigidities of
: upper and lower flanges, ¢, and
2 L L : : )| ¢y, respectively, and
: left and right stiffeners, ¢ and
N-1 acl e ¢¢, respectively,

© © 6. flexural rigidity parameters of
the upper and lower flanges about
their weak axes, g; and &/, re-
spectively,

where the rigidity parameters of boundary member m, for instance, are defined
by the following expressions:

_A’LL — Im = 2
gn="1" $w=24(1-v) 7~ and Ea=64(1—>")

Fig. 6(c) Generalized mesh point system
for w(x, y).

1 i
‘32 hsa ’

2.22)

in which A, J» and in refer to the cross sectional area, torsional rigidity con-
stant and the moment of inertia about the weak axis, of boundary member m,
respectively.
7. ratio of the magnitude of the maximum residual stress to the Modulus
of Elasticity of steel: a=oay/E,
8. ratio of the magnitude of the maximum residual stress to the yield
strength of steel: {=0v/ovw,
9. ratio of the magnitude of the maximum initial deflection to the thick-
ness of webplate: p=A/h,
10. bending-shear interaction parameter, 4.

IV. NUMERICAL ILLUSTRATION AND DISCUSSIONS ON
THE ANALYTICAL RESULTS

To verify the proposed analysis, several test results are cited!®-17:!», They
are analyzed and compared with the results from the proposed analysis. Tests
reported in References 16 and 17 will be referred to as Lehigh tests; while those
reported in Reference 18 will be referred to as Japanese tests. Twelve tests are
cited from Lehigh tests and three are cited from Japanese test. Various para-
meters in the test girders are provided in Table 1.

Past experiments have shown that the load carrying capacity of a deep bend-
ing panel is most frequently governed by the vertical buckling of flange, lateral
buckling of girder and the torsional buckling of the compression flange rather
than by the yielding of the webplate.
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Table 1 Calculation of parameters in test girders

Test Type rA = 8 = ex
Girder of 23 L ¢
No. Load b/a a/h

61-T1 M 0.667 278 0.43 0.46 0.10 0.10 6.1 6.1 0.47 0.47 0.7 2.3 0.139 0.21 0.242
G2-TY M 0.667 278 0.46 0.47 0.10 0.10 21.0 21.6 0.47 0.47 2.4 2.4 0.157 0.21 0.378
G3-Tt* M 0.724 278 0.42 0.46 0.10 0.10 168.4 21.1 0.48 0.43 320.0 2.0 0.148 0.24 0.3
G4-T1 M 0.667 582 0.97 0.98 0.21 0.2} 195.2 189.0 4.35 4.35 5.0 5.0 0.407 0.07 0.583
G5-T1*= M 0.724 581 1.14 0.97 0.21 0.2} 1536.0 191.9 4.34 4.34 669.0 4.2 0.833 0.08 0.495
G6-T1 S 0.667 389 0.65 0.65 0.14 0.14 59.4 59.4 1.30 1.30 3.4 3.4 0.376 0.08 0.328
67-T1 S 1.000 255 0.96 0.95 0.20 0.20 79.0 8.6 1.8 1.86 11.0 10.9 0.446 0.1} 0.389
G8-T1 € 0.333 761 0.31 0.30 0.47 0.47 25.0 24.4 23.30 23.30 0.4 0.4 0.355 0.11 0.226
69-T1 C 0.333 1145 0.46 0.46 0.71 0.71 85.6 82.6 78.90 78.90 Q.6 0.6 0.286 0.04 0.165
F10-T1 C 0.667 292 0.83 0.83 0.31 0.08 69.9 70.0 6.59 0.67 7.1 7.1 0.108 0.12 0.342
F10-12 S$ 0.667 292 0.83 0.83 0.08 0.08 68.9 70.0 0.67 0.67 7.1 7.1 0.157 0.16 0.371
F10-T3 S 0.833 234 1.04 0.04 0.10 0.10 87.4 87.4 0.8 0.83 20.0 20.0 0.053 0.19 0.382
A-M M 1,000 267 0.53 0.53 0.40 0.40 21.3 21.3 8.95 8.95 2.6 2.6 0.167 0.22 0.640
B-Q S 1.000 267 0.53 0.53 0.40 0.40 21.3 21.3 8.95 8.95 2.6 2.6 0.167 0.10 0.282
C-M M 1.000 200 0.40 0.40 0.30 0.30 9.0 9.0 3.78 3.78 2.0 2.0 0.125 0.19 0.555

* circular tubed compression flange

The analysis of a bending panel by the proposed analysis, therefore, consists
of checking these bucklings from the solutions obtained. The procedure to
evaluate the strength of the panel is summarized as follows:

1. evaluation of the flange stresses using the solved displacement components

u(x, y) along the flanges.

2. investigation of the yielding of the webplate using von Mises yield cri-

terion,

3. investigation of the possibility of the vertical buckling of the flange,

4, investigation of the possibility of the lateral buckling of girder,

5. investigation of the possibility of torsional buckling of the compression

flange.
The buckling criteria used herein are essentially those presented in Reference 8;
however, they are omitted in this paper.

In this paper, computations are restricted to the single interval of approxi-
mation for simplicity. The results of the behavioral analysis are demonstrated
by Figs. 7 through 12.

Fig. 7 shows a load-g, relationship of test girder G1-T1, where o, refers to
the average compressive stress in the compression flange at the point concerned.
This relationship shows that it is approximately linear. Furthermore, it is found
not significantly affected by the magnitude of initial deflection of webplate.

Fig. 8 shows a load-g, relationship of test girder G1-T1. In this particular
case, several computer results with different initial stresses and initial deflections
all coincide approximately with the experimental values.

Fig. 9 shows a deflectional surface of the webplate in test girder A-M com-
puted from the proposed analysis. This figure shows a general trend that the
deflection of webplate in the compression zone is more pronounced than that in
the tension zone. The figure shows that the deflectional surface is basically
symmetric with respect to x=¢/2, and has some skew symmetry. This small
skew symmetry comes from the third power term while the symmetry comes
from the second power term of solutions w(x,y). This skew symmetry could
have resulted from the small differences of boundary conditions at x=0 and x
=a, or from the cumulative error associated with the finite differences. The ex-
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0.2[

computer result
hoes 000 L o —ee——- simple beam theory
- O=—Q-- experimental result

e e simple beam theory

— OO~ experimental result

‘-’f = .‘f/;IYW 3¢ M
i 1 1 o— (/ ) 1 !
-0.5 -0.4 -0.3 -0.2 -0 0 0 0.1 0.2 g.3 0.4
Fig. 7 Load-or curve: Test girder G1- Fig. 8 Load.g, curve: Test gird-
TI1. er G1.T1.
perimental deflectional surface was W/
by no means symmetric. Although -

the proposed analysis fails to predict
the solutions above the yielding load,
A% ., rough estimation of the ultimate
load, 4%, may be obtained by an ex- "

trapolation formula: 4%, =A% x0u/ g g

Orv. It was mentioned earlier that ‘\/“
consideration was limited to the single \/ ) ’ <
interval of approximation in this pa- / N N 4 \ / \
per; however, 4%, will be directly ob- ‘““li]ﬁ"ﬂ.’\’

. . . . ,..ull"" """lllllln..,,_.‘
tained if the multiple intervals of V
approximation are employed. Vari- .
ous values of initial deflection and
initial m-plane. stresses are .assufned Fig. 9 Deflectional surface of webplate:
for the theoretical computation since T . o ar
L N N ) est girder A-M: £=0.025; (=
it is found through the investigation 0.005; 4=0.65.
that the initial in-plane stresses are
the least known parameters among many parameters among many parameters
considered. The accuracy of the measurements of initial deflections, first of all,
may be questioned. Besides, the initial in-plane stresses were not actually mea-
sured in any of the tests cited. Except for those, the prediction of the ultimate
loads will be found quite satisfactory.

Fig. 10 shows an in-plane displacement configuration of test girder A-M. It
is seen that the upper flange undergoes compression and the lower flange under-
goes elongation.

Fig. 11 shows the distribution of . across the depth of girder panel A-M
obtained from the proposed analysis. It is seen that the compressive stress is
much reduced compared with the tensile stress in the webplate.
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-0.2 0 0.2 u/h
I B R
v/h

Fig. 10 In-plane displacement configura-
tion: Test girder A-M: p=
0.025; £=0.005; 4=0.65.

(Ux+ be)/onl
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/ (ox‘r cbx)/u‘lwl
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cx/ch //
/

tension

1.0 0.5 A

Fig. 11 Distribution of ¢, across the
depth of girder: Test girder
A-M: £=0.025; (=0.005; 4=
0.65.
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P, ton

O\ \ - 30
N

—————— 2nd Approximation\a%‘

3rd Approximation

[ g i © experimental result

C

M= 250 P
(ton-em) . _ g 125

u = 0.167

x 1076 . ox

-1000 -500 0

Fig. 12 P-ep, relationship: Test gird-
er A-M: 2nd and 3rd order
approximations.

Fig. 12 shows a load-e.. relation-
ship of test girder A-M, where &. de-
signates a bending strain component.
In this figure, both the 2nd and 3rd
order approximations are shown for
comparison with the test results. It
may be seen that the third order ap-
proximation is in better agreement
with the experimental results. The
experimental strains plotted were ob-
tained from the total strain compo-
nents el, by eliminating the residual
strain components.

Many experiments have shown
that the ultimate load of a shear panel

is always governed by the yielding along the diagonal line. This yielding is
caused by a significantly large stress in the direction of the diagonal line. This
phenomenon is ordinarily referred to as a diagonal tension field and is character-
ized by an outstanding bulge along the diagonal line.

The analysis of computed results based on the proposed theoretical analysis
consists of checking the deflectional surfaces, yielding of the diagonal line, and
load-¢1, 2 relationships, where o1 and o: designate the maximum and minimum
principal stresses, respectively. The ultimate load of a shear panel is found by
finding the load at which interior points on the diagonal line initiate yielding.
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Basler’s theory is also applied for comparison with the ultimate strength evaluat-
ed by the proposed analysis. Furthermore, overall behavior of a shear panel as
predicted by the proposed analysis is compared with simple pure shear case and
with experimental results whenever available. The simple pure shear refers to
the case of an ideal flat plate subjected to pure shear condition. Results of this
analysis is demonstrated by Figs. 13 through 15.

Fig. 13 shows a load-si, o3 relationship of test girder B-Q. This figure shows
a general trend that the maximum principal stress tends to increase rapidly with
the load, while the minimum principal stress tends to creep with the load. This
trends is found very prominent when the
magnitude of the initial deflection is large.

s =
min. Principal stress '/"VW max. Principal stress
'72/ oy I/ a]/qvw

Fig. 14 shows a deflectional surface
of test girder B-Q. This figure shows
outstanding bulge in the direction of the
diagonal line of the webplate; further-
more, the deflectional surface is of typical
three half waves peculiar to the shear
problem,

Fig. 15 shows an in-plane displace-
ment configuration in test girder B-Q.
The panel is seen to deform into a paral-
lelogramic shape.

The results of computations are shown
in Tables 2, 3 and 4. In these tables, the
ultimate loads of the test girders are pre-
dicted using 5x5 mesh point system and
the single interval of approximation of
the load-displacement curves. In Table 2,

Fig. 14 Deflectional surface of webplate:
Test girder B-Q: #£=0.125; {=
0.0025; 4=0.28.

\
\
A

W= 01250
5 = 0.0025 \

A
v = 0.100 \\
¢ = 0.25 \

1-0.3

Loz

/
/

/ ws 0,125
/ ¢ = 0.0025

/] [» =000

5= 0.25

computer result
simple pure shear

|

90y %2 %y
s

Fig. 13

0 0.2

der B-Q.

0.4 0.6

Load-s1, 03 curves: Test gird-

Fig. 15 In-plane displacement con-

figuration:

Test girder B-

Q: p=0.025; {=0.25; 4=
0.32; f=—0.5,
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v/h

b = oy, N=S
{ r B 1.0
N=7
0.3
N=4
| ﬂf N=6 o8l
' N=4
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l ’ 0.6 [
° g b,
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A b oar
0.11 ]
J } 0.2 L
N=7
! L v/ 0 L : 1 1 N
0.5 1.0 1 2 3 8
Fig. 16 Load-v curve: Convergence Fig. 17 Convergence curve for v: Test
check: Due to shear load, . girder B-Q: 4=0.30.

dins corresponds to the magnitude of load at which the yielding initiates in the
panel system. On the other hand, o, and o. refer to the average stress in the
compression flange and the minimum of the torsional, and lateral buckling load,
respectively.

Figs. 16 and 17 show some of the convergence curves for test girder B-Q.
These figures show a good convergence of 5x5 mesh point system. Similar re-
sults were obtained for bending panels.

V. CONCLUSIONS

The proposed analysis is based on the expansion of the displacement com-
ponents in terms of the load parameter. In this paper, computations are made
using single interval of approximation, and the results can be summarized as
follows:

1. The contribution of the 3rd power terms in the in-plane displacement
components # and v is usually less than 10% of the total of the 1st through the
3rd power terms,

2. The contribution of the 3rd power terms in the deflection w can be some-
times as high as 30% of the total deflection, w”. Besides, the 2nd power term
of w is usually the greatest for webplates with relatively long post-buckling
range and zero power term is the greatest for webplates with large initial de-
flection and relatively short range of post-buckling,

3. The contribution of the 3rd power terms in the in-plane stress components
is usually small, namely, less than 59 of the total of the zero through the 3rd
power terms. Furthermore, the Ist power terms are usually greater than the
2nd and the 3rd power terms,
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4. The contribution of the 3rd power terms in the plate bending stress com-
ponents is approximately in the same order of those corresponding to the 1st
and 2nd power terms,

5. Larger initial deflection causes more curved load-displacement and load-
stress relationships,

6. Larger initial deflection causes larger deflection in the webplate. The in-
plane displacement components, however, are not significantly affected by the
initial deflection,

7. The pattern of the initial deflection does not necessarily cause a similar
deflectional shape of webplate due the loading,

8. Larger boundary rigidity leads, in general, to more stable behavior of
girder panels in the post-buckling range. However, excessive reinforcement of
the boundary members does not prove to be beneficial in the case of shear panels,

9. The larger the yield strength of steel is, the larger the post-buckling
strength of the panel becomes,

10. The proposed analysis can take into account several bucklings by re-
moving the rollers supporting edge y=»b and using appropriate boundary condi-
tions, and by using the multiple intervals of approximation of the load-displace-
ment component curves. This modification is being undertaken by one of the
authors.
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