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ANALYSIS OF ISOTROPIC AND ORTHOTROPIC
RECTANGULAR PLATES WITH TWO OPPOSITE SIDES
SUPPORTED BY EDGE-COLUMNS

Takeshi Chisyaki*

I. INTRODUCTION

A plate structure under which columns are directly connected with the plate
at the edges, as shown in Fig. 1, is a kind of flat slab, such a structure is often
found in the fields of civil engineering, architecture, ship building and machinery.
However, the merits of this structure, such as more economic, more rational and
more functional compared with the other plate structures with beams and col-
umns, are not utilized enough in their construction, since the practical method of
analysis and design of this structure is not settled.

The analysis of the structure with edge-columns as
in Fig. 1 is different from that of the flat slab with inter-
mediate-columns in former investigations %, That
is, the redundants of columns in the latter are dealt
as a given load on plate, or a plate in the latter is
divided into two parts, strip with colums and without,
in analysis. On the other hand, the redundants of
columns in the structure with edge-columns should be
dealt in the boundary conditions of plate. Therefore,
it is unable to apply the theories proposed for the
latter to the analysis of flat slab in this paper. And, except for such approximate
solutions as the difference method and the finite element method, there are only
a few investigations for the exact solutions on circular plates supported by edge-
columns®»9>® that on a rectangular plate simply supported at conners®, that on a
isotropic rectangular plate supported at a few points?, etc.

In this paper, the plate in flat slab is simply supported at two opposite sides.
The other sides are supported by the edge-columns arranged arbitrarily. It is
provided that the thickness of plate in flat slab is
constant and that the deflection of a plate is small
in comparison with its thickness.

Since a plate is directly supported by edge-
columns, vertical reactions, horizontal reactions in
the x and y directions, bending moments in the x
and y directions, and twisting moments in the
plane of plate are transmitted from the plate to
the columns in the structure as in Fig. 2. If the
plate is only subjected to lateral loads, then twist- Fig. 2

Fig. 1
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ing moments and horizontal reactions at the plate to column connections may be
small and neglected. Also, the influence of bending moments, which is generally
omitted in the theoretical analysis for a flat slab, can be neglected. Hence, it
may be assumed that only vertical reactions are transmitted from the plate to
the column.

II. ANALYSIS

(1) Deflection of Plate y

To analyze this plate structure, the x—y p IC__Simple Support D .
plane as the middle plane of plate before defor-
mation is introduced. The x-axis is the side
AB, the y-axis is the side AC, and the positive
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direction of z-axis tends downward, as shown At M
. . Q Slmple Support a x
in Fig. 3.
The known fundamental differential equa- h T, .
tion for a orthotropic plate under an arbitrary il . *T
lateral load, p(x,%), can be represented as fol- z
lowsﬂ; Fig. 3
D.2 Dy +4C+v.D p, 2w _ 1
z +(V‘!/ 2+ vz ?l) 2ay +Ly ay4 —p(x» ?/)» ( )
in which

w: deflection of plate,

h: thickness of plate,

E., E;; Young’s moduli in & and y directions of plate,
vs, vy : Poisson’s ratios in x and y directions of plate,
Do=E {120 —vary)}, Dy=E {1201 —vavy)}, C=Gh¥[12,
G: shear modulus of plate.

The general solution of Eq. (1) is given as the sum of the complementary func-
tion w:, and the particular solution w,.

In this paper, the plate in flat slab is simply supported at two opposite sides,
AB and CD, and supported by edge-columns at the other sides. Then, the fol-
lowing equation is assumed as wi, which is satisfied with the boundary conditions
for simple supports at sides AB and CD:

w1=i X sin fay , (2)
n=1

in which
X.: function of x only,
b : length of sides AC and BD, Ba=nx/b.

Substituting Eq. (2) into the homogeneous equation of Eq. (1), the differential
equation for X, is given as follows:

0Xn!
axt

2
—(K12+K22),8n2 aaX;n + 1 Xn=0 ( 3)

where
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eP=R+ V=, =R —E—r, £2=Dy/Ds, B=(vy+ve+4C[D2)2 .

Three kinds of general solution of Eq. (3) are found in the following forms de-
pending on the value of (*—«?):

@ Casel &*—£>0):
X, = A% sinh g18sx+ B} cosh g1fu+CL sinh kaax + D5 cosh kafn , (4)
® Case I (z*—x2=0):
X2'=(AY 4By x) sinh £pux+(Ci' + Di'x) cosh #pez | (5)
® Case I (&'—x2<0):
Xa''=(Ax" sinh £/ Bax + By cosh g1/ Ba) Sin ra’ fn
+(C sinh x1’Bax+ DY cosh k1’ fn) COS ko' Bnt (6)
where
o' =+ E+e)2, w' =~ (E—r)2
in which Aax, Bs, C» and D, are constants of integration.

In Case II, the solution of complementary equation for w: becomes multiple
root, i.e. ¥*—x*=0, which is the same kind of solution as one of an isotropic plate.
Substituting D.=Dy=D and v.=v,=v into Eq. (5), £ and % result in unit, which
is the value for the solution of isotropic plate.

Since many isotropic plates are used in practice, a complementary function
for them will be given as Case IV.

@ Case IV
X' =(AY + By x) sinh a2+ (Cy + D} x) cosh par . (7)

Expanding a given load, p(x, ), by double trigonometric series, we obtain

plx, y)= f‘:_. i Fow SIN o SiN Buy (8)
m=1 n=1
4 a b
where Fun=-—- S ( Pz, y) sin anx sin Buydady,
ab o }o
a: length of sides AB and CD, an=wmx/a.

And, the particular solution of Eq. (1), ws, may be assumed by

Wo= i i G Sin am sin fuy , (D
m=1 n=1
in which Gms is a constant depending on m and »n.
Substituting Egs. (8) and (9) into Eq. (1), the following equation for Gms in Eq. (9)
is found;
Gmn:an/Da:<am4+Zzzamzﬁnz+lizﬁn4) . (10)
Substituting Eq. (10) into Eq. (9) and adding to Eqs. (4)~(7), the general solu-
tions of Eq. (1) can be written as follows, depending on the cases;
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@ Case I:

wh= i (AL sinh r182 + B cosh k182 +Ch, sinh s3fa+ D, cosh rafn) Sin fuy
n=1

+ i‘ i‘, Ii";" Sin am Sin fay , an
m=1n=1 Kpnn

in which Kmn=Dlan? + £:128a?) (am® + 52’ Ba®),
® Case II:

w=S" {(AY+ B z) sinh £z +(Ci+ Dix) cosh £z} sin uy
n=1

+ fj i {‘"ﬁ” sin ama sin Buy , 12)

m=1n=1 mn

in which Kmn=Du(an?+782)?,

® Case III:

o
W= {(AM sinh 1’ Bnx+ By cosh k1’ fn) sin £s’ B
=1

+(CH sinh g1/ Badt+ Dy cosh &1’ Bal) COS k2’ fn} SIN oy

Shs 2”;’;1 in aw Sin By » (13)

m=1n=1 mn

in which K= D.(am*+2%an?fnd -+ £2But),
@ Case IV:

W= i {(AY + BY z) sinh oz +(Cr +D7 %) cosh ga} sin pry

n=1

e 2’";; sin amz sin By , (14)

m=1 n=1
in which Kan=D(am?+pa?)?.

The integral constants, A", By™, Ci™" and D", can be determined by
the boundary conditions at sides AC and BD. That’s, if the vertical reactions,
at edge-columns are expressed by trigonometric series, then the boundary condi-
tions are given by

Pw Fw\ _ Fw AC\ dw
Mx—-“Dx( Pye + vy 3yt > =0, VZ__DZ{ x +<v1+ Dz> axayz}

=i Vansin giy  for x=0,
n=1
ik 2 2 4C\_@ o
w w w w
Mz__—D,;< Py +vy ayz >——0 ’ Vz-—-'—Dz{ x +<W/+ Dz) axayz}

=31 Vaasin puy for z=a ,
n=1
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in which Vi and Vs, are the coefficients of Fourier series for the vertical reac-

tions V4 and Va.

Substituting Egs. (11), (12), (13) and (14) into Eq. (15), the integral constants are

obtained as follows;

AT IajIV i i RLV_ VAn>U01~IV+ (i (—=1)mRLIV Vo T01~1v]
0 L \m=1 Dz lm:l Dz
B;dv: fljlv i i RLZJV——VA~"<->H0“V+ {i (— 1)mRI Y — VB” JoINIV:]
0 L \m=1 Dz m=1 D:z:
e (i Rigr L )E+ {i S F]
0 L \m=1 Dx m=1 D:c
N at [/ = N V. " . V. ) ~
}L w_ SI~IV (7'?;1’1 Rz’mlv 1/)1 >PI Iv {Z ( l)mRI ~IV DBx R(IJ IV]

in which ya=nzab, Ry ={ami+xBut}amFumm/ K", y=vy+4C|Ds.

@ Casel:

2
Si= (22 + w2 ) sinh k7w sinh #17n— 22101 COSh k17 COSh Koy 20101

2 . .
UJ————]—Lmz sinh 17, sinh 7w — w1 cosh kiyn cosh ksyn+ o1
2

T = w1 (cosh k1yn—cosh rays)

. .
H{=w; sinh 1y» cosh £3Yn— @2 ——21 sinh &:7n cosh k1ys
2

Ji=—1 sinh xipaton % sinh sare
2

i . A A
El=""" sinh £1y7m Sinh gayn— a1 ~L cosh k172 Cosh xzrn-l—cor—l
@3 A3 Az

Fi=—w; % (cosh k17, —cosh kayy)
2

. AL

= (Z,l sinh k1y» cosh kapn+ w1 —f sinh &ayn cosh k17
2 2

1 o’ A

Ri=-""sinh K1fn—w1~—— sinh ks
w2 A3
A=kt —y), =rlke®—y), or=r1’—vyy, ws=rl—yy .
®@ Case II:

#F—v)@E—y? 4R~y

E(I‘iﬁ2 —x) EZ —Vy

= {4;(3;2—1)—

} sinh? Zra+E(E —vy) (012 — )ral

(16)
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U — -

By vy

=2 __ =2
n_ —1? { 23et—y) 4z } sinh? &y +-1— (B2 —wy)
In I

B&'— ) (& —wy)

o
T =" e

sinh E}’n
H'= __L {ZE— (& —vy) Bx*—y)
2

SOV S
@) }smh ¥rn COSh &7 m (&E—vy)

— 2
Ji= { (& —v) @&’ —y) } sinh ,q,“_—(,; —vy) cosh £y
G,
i 2(3" — } sinh %y» cosh Ern+&c{
K —yy 4 Tn
. _
pro_ L { 4 2@" — } sinh m—z'% cosh &rx
e o =y Tn

=3 ot -
Pc,”z—L {22—— %Jl} sinh? &ys

1 .
‘l]I: — (Ez — )Jy) sinh Ern .
Tn
Case III:
3
Si= f";—{(pﬁ + p22) (1% + 79%) sinh? k17 SIN? ka’7a+ (prra— per1)? sinh? k1" cOS? 2"y}
172

ar__ Ti{p1ira— paty) o111+ pets)

0 pre sinh #; Y cosh x1 "I —I—T sin fcz')’n COS £2''n
172
_npita— ety ti{(o1T1+ o972 .
T, = Tlowr=prm) Gop "t COS K Tn— zlpertory) oo £1'7n SN Ko/ 70
o172 0172
ol +19%) . . o1ty —p2t1) .
H" —oleiter) sinh? g1y sin® ke’ yr— e ) sinh? k1'ys cos? £2'7n
[k 0172
171+ P3T2 .
—PTTOT Coshe £1'7n SIn? K2y
o1
2 2
ottt . .
A sinh k17 SiN £2'7a
72
2 2
TiiTet . 1T3— 071 .
E''=—— sinh?® x'y sin? :cz’rnJrB-"**i— sinh? ky'yn cOSE £2' 7
()
2 2
o(T1°+78°) . .
Fil= _pmiite) sinh &1y Sin &9/
0173
1Te— 0271 . 171+ paTs .
P = LT G k' cosh mr ra— P22 Sin k' €OS K3
o1 o
1T3—PaT1 . 171+ 0372 .
R =L i /7w 008 k't 222 Cosh iy Sin ke
o1 o
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or=8"(&1'?=3xs"*—y), pr=r/3Bm1"’—m2't—y),

T1=k1" — g —yy, rs=2r1'Ks" .
@ Case IV:

St =(3+v)? sinh? ,— (1 —v)¥yn?

wv_ 2684y oy 1—y

o = ———(1_v)rn3 sinh? yn+ T

1 .
Ve —“;: sinh 7
= — 3+;’ sinh ys cosh yn — 1=y
Tn
J' = 842 Ginh Tt 1= cosh 74
' 7n

w_ 234y . 2

Ey —w(l_v)ms sinh y» cosh 7n + o
23 . 2

FlV= _—(1(_+);)‘3 sinh g cosh 7

=3 Gnhey,

Tn
- 1—y .
=— sinh 7x .
0 n 7

On the other hand, the edge-columns at the side AC in flat slab are given
such numbers 1,2,---,4,---, and », and at the side BD, as 1,2,---,4,---, and s,
as in Fig. 3. Expanding the redundunt R:%, which is the vertical reaction of the
edge-column “{” at the side AC, by trigonometric series, we obtain

(RiA}sr=3) R& sin fuy an
n=1

in which i=1,2,---,7; Ri=2/b-R:* -sin nan:a.

7i4b is the co-ordinate in y direction of the edge-column “i”, and { }sr means the

sine series with dimension [FL™].
Summing up all of {R:i4}sr given by Eq. (17), the vertical distributed reaction
at the side AC in flat slab is found as follows;

VAzf‘_, Van sin ‘Bnyzi] < 72; R4 sin nm;u> sin By
n=1

n=1 \i=1

sz% 1 ReA sin g . (18)

1

Similarly, denoting (0, »;s0) and R;® for the co-ordinate and the vertical reaction
of the edge-column “j” at the side BD in flat slab, the arbitrary constant Vs, in
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Eq. (15) will be given as
2 s
Van= ——7 g sin #zy;z . a9

After substituting Egs. (18) and (19) into Eq. (16), the elastic surfaces of
plates in flat slab are expressed as follows;

4 o S 1 . " . . .
w1~1v=_g:[ p3} 21{ T sin mrb+ (@ +(— 1" i,m”} Fonn sin nay

- ;2 §; oY é R4 sin nania— 2" é R;® sin nnm) sin nm;] (20)
n=1 i=1 J=1
where
t=xfa, y=ylb, p=bla, R ={(mx}+yra}mo)|Kns'"
@M Case I:

e ={(mr)t + k1 H(mm)* + kalya®}

o'= [an{sinh k1yng+cosh keyn sinh k1y(1—8)}

1
‘)’nssé

—*;l—m sinh xoyn cosh s17a(1—6)
2

+ % wr{sinh ksyné+cosh kiys sinh reyn(1—E€)}
2

wi? .
——— sinh k17 cosh raya(l —-5)]

w2
O 31 - [_ wi{sinh kin(1—&)+cosh ks sinh xiyaf}
In So
+% wz sinh ksyy cosh kiyné
2
—-;—;—au{sinh k171 —&)+cosh kiya sinh rayeé}
2
+< sinh k17n cosh mm&]
w3
©@ Case II:
KX ={(mn)t + a2}
P 1 {L{ 48 2@F'—x)
Sy’ ®—v)  (®—p

£ (, Bow@Eop)
AP

} sinh %y» cosh &ya(1—&)

} sinh &y, sinh zy.(1—§)
1

E (k2 —uy) sinh :crnS-I- cosh m&]
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1 4%? 282 —y) } s -
i1
=t | - — sinh &r» cosh
=5 [ 7 { F—v) Ry rn cOSh Epnd

_1-8 {23- (B —v3) 3F*—7)
7n (& —y)

—ri(k“ —yy) sinh ky.(1—8§) _-f% cosh %ya(1 —G)]

} sinh %yx sinh xysf

® Case III:
K,;Inl :(Wln')4 + 2% (Wm’)2 . 7’”2 + ICZ)’n4

(DI“:-~11H [———7‘(‘0 m:‘o—*.m) sinh x1'7» sinh &1’ ya(1—E) COS ka1 Sin k3'ya(1—8)
0 0172
+ Ti{p1t1+pets)
0173
_ (r:13412%)
73

cosh k1'yx sinh k1ya(1—&) sin g7z Sin £2’ye(1—8)

sinh k1/yx cosh k1'7u(1—&) sin x2'ya Sin £2'7a(1—6)

+ oa(t:i¥+a?)
0173
_ {pms—pary)
o1
_ (pmit-pars)
o1

sinh k1'yx sinh k1ya(1—E) sin x2'7n €08 £2'7u(1—§)
sinh k1/y» cosh g1'7a(1—£) €OS k3'yn COS £2'7a(1—§)
cosh £1'7s cosh &1ya(1—E) sin xa'ya cOS ICZ/Tn(].—E):l

O %[_MQ
o T201
nulpizitpata)
. 7301
—l—zﬁ;:—wﬂ sinh £1/yn cosh x1'ya Sin #s'yn SiN £2' 7€
T pi
pm—prm
o1
fikihadiciz)
2

sinh g1’y sinh k172 COS k2’ yn SIN £a'7né

cosh k1'7n 8inh k1 7a€ SIN 62" yr SIN K270

sinh g1'ys sinh o1/ yx€ sin ks'yn COS K2'7nf

+ sinh k1'7a cosh £1/ya€ COS k2'yn COS K" yn

+ cosh «1'yn cosh k1'7xE sin k2'yn COS 162’7’71,5]

4 Case 1V:
Kpn={(mz)*+ra*}*

1 [(3—!-1))5

St —_7,_2—— sinh 74 sinh ya(1—£€)+- 2(3+v)
0 )

A—v)ra’
. 2
sinh rHE—I—F cosh 7%5]

@IV —

sinh y, cosh ya(1—§)
+ (1—y)(1-$§)
T

oV —Sl— [_QL:?S_—GL sinh 7a sinh mg_%% sinh 7 cosh 7a
_ (1;'”11)5 Sinh Tn(l_s)——';zn—z cosh Tn(l“‘s):l
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Then, substituting Eq. (20) into the well-known relationship between the elastic
surface of plate, and the other displacements and the stresses of plate, the ex-
pressions for the slope, the bending moments and the twisting moments of plate
can be found. The following expression for the bending moments of plate in the
structure are obtained;

o oo 2 2 - —
;~W=a2[z b {—-—(’”’}){ii’v”“ sin mn5+(a>§;”+(—1)MQ;~W>R;:JV} Fon sin nizy)
m=1n=1 mn
_-2 ST{@LY ST R4 sin nnea— 2 ST RyE sin nays | sin nx (21)
#612 =1 i=1 7 =1 7 7
in which
@O Case I:

i 1s’ [a)12{sinh e17né+ cosh sy sinh £iya(1—£)}
743 0

2 .
—71 w10z sinh gsyn cosh kiya(1—E£)
2

+—;iwm{sinh ka4 COSh ki7m Sinh rpa(1—£))
2

—a1? sinh k1% cosh /czrn(l—E)]

Ol= r,,ls{, [_mz{sinh kin(1— &)+ Cosh raga Sinth i7at)
—l—%wlwz sinh x17n cosh k17
_';_: wioz{sinh raya(1—E&)+cosh riyy sinh kayné}
+ w:? sinh g1y cosh K?Tnff:t
® Case II:
@I:SL},I [_(Ez_vy)g {2,;__%&} sinh &y sinh Eya(1—£)

"'Tn(kz "‘Vz/)z(l _5) Slnh E)%f:‘

(£ —vy) BE*—7x)
EE—y)

+ Tn(l—iz - Vy)gfs Sinh E]’n(l "‘E)}

QL‘:-EET [(7;2—»y)(1~5) {ZE— } sinh ¥y sinh &yaé

® Case III:

F— 7l [n(pu‘z—pm){

S(I)H . -—T1 sinh 161'7’71, sin I{Iz’]’n(l —f)
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173 cosh £1'yn €OS k2’ yn(1—E€)} sinh £1'yx COS £2'1n

+’—l<%——z‘””){—n sinh e17a(1—€) sin 1/ 7a(1—8)
~+73 cosh £1'7n COS £2'ya(1—&)} cosh k17 SIN £ 1n
—IL:;T—?Z {—71cosh g1'7a(1—&) sin ka'yu(1—8)
+79 sinh £1'7n €08 ke’ yu(1—&)} sinh k17 SIN k2"
_{__‘9_2(2'12—1—12’) (

0172

—73 cosh £1/7a(1 &) 8in ka'yu(1—£)} sinh k17 Sin &2/

— 1 sinh &1y Sin k2'7n

T eaTy
o
—7g sinh g/ ya(1—&) sin ka'yw(1—E€)} sinh r1'yx COS 6271w

{—71 cosh £1'7a(1—&) cOS £2"1n

0171+ 0373
— Ry

o —7y1 cosh x1'yu(1—&) cos k' yu(l—8)

— 173 sinh &1'yn 810 ko' yu(1—E€)} cosh &1/ys Sin ICern:|

AT __ Tnz [_Tl(plr2~pzrl>

x T Il
0 0172

(—z1 sinh x1'yy Sin &2/ pué

+ 73 cosh £1/7n COS k1'yxE) sinh £1'yn COS k2'rn

_ nlormitpves) 1;11;:‘0 173) (—71 sinh £1/7x€ SN ko' 7nf

473 cosh £1'7x COS £/ 7€) COSN k170 SIN £2' 7
fi:%zg (—171 cosh x1'74€ sin k2'yné

+ 71 8inh £1'70 COS £3'7a€) SInh &1 7w SIN K210

2 2

_peiter) ) (—r1sinh &1'ys SN £2'yn
0173

—73 COSh £1"7a€ Sin ka'7xé) Sinh k170 SIN k37
#I—ﬁm—;p-zEL (—71 cosh £1'yaE COS k3'n

1

— 73 sinh g1/7sf sin ks'ywf) sinh £1'y» cOS £2"7n
p1t1-Fpats

o

+ (—r1cosh g1 ya€ COS k2" yué

—zgsinh &1 yaf Sin ke’ 1mé) cosh &1'yy sin ;cz’rn] .

@ Case IV:
P = Sl})v [—(1—v)(3+v)¢ sinh 7 sinh ya(1—&)— (1 —)* (1 —E)yn sinh y.£]
AV 1

[A=v)(3+»)(1—¢) sinh yx sinh 7aE+(1—v)*rf sinh yu(1—8)] .

z T Qv
So
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And
My =xa? [ % 5;1 {T—’ﬁ%ﬁ sin mne+<<7>§f”+(—1>"@§~W>R£n;”} Foum $in nzy
- ;312 7%1 o ZZ:“{ R sin ngia— 25" é R sin nmyja> sin nm]] 22)
in which
@ Case I:

5;:7%r[w1gx{sinh k1yné+cosh waya sinh s1ya(1—8)}
NI

——% @21 Sinh ksyn cosh k1ya(1—8)
2

+%w1gz{sinh kayn€+cosh kiyn sinh karn(1—6)}
2

o .
0 sinh k1y» cosh E2Tn(1'—g)}
2

0= T:S(I} [—wlgl{sinh £1yn(1—&)+cosh kaya sinh r1yné}
+—;iwzgl sinh gayn cosh ki7aé
2
—~';i wrga{sinh kayn(1—&)4cosh g1ya sinh rayaf}
2

2
-l———(: g2 sinh k17 cosh ;czrnf]
2

gr1=1—vrs?, ga=1—vzka? .
® Case II:
ot S =3
q‘>;;=§1zr[(1—pxz2>e iyz—i"———z’(’—g%)—ll} sinh s sinh Fra(l—£)
-2 -2 _ .
+%<1 —vw;,)(%*——%——x—) sinh %7 cosh Fra(l—&)
k(] —Vy b

4 71— v2%2) (B2 —vy) (1 — &) sinh Bywf+28(1 —vavy) cosh Em&]

_ 1 _ _ @)@ -n)) o -
o= oy [_(1_,%2)(1_5) {25_7%2—_7——— sinh ¥7» sinh Epeé
rt =3
——z*(l—vzvu) <—~—_ 2% — 3,” 4 ) sinh ¥y» cosh xyaé
n -y -7

— 7oL —v282) (B —vy)E sinh Epu(1—8)—2E(1 —vavy) cosh Eyu(1— E)J
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® Case III:

— n2 —— . .
@f,”:—éﬁf [M { f1sinh &1/ yu(1—&) sin k' ya(1—8€)
0 p172

— fa cosh £1'7a(1—&) cos w2'yu(1—£)} sinh £1'yn COS £2'7n
+’—1(ﬂ%:;’”—”) {fi sinh &1/ 7a(1—£) sin x27a(1—E)

— facosh k1'ya(1—8) €0S k3'7a(1—£)} cosh &1y SIN £2'7n

2 2

—-11;_%_;—2 {f1 cosh &1’ (1 —&) sin re'yu(1—&)

— Jesinh &1'ya(1—8) €08 w3'7u(1—€)} sinh k1w sin £2'yn
n e+ a%)

P17y
+ fa cosh k1'yu(1—8) sin y'7a(1—£€)} sinh &1/7y Sin sa'yn

{f1sinh 1" 7a(1—&) cOS ke'yn(1—&)

B osh ey pa(1-8) cos (1)

+ /e sinh &1'7a(1—8) sin &3’ yu(1—£)} sinh #1'7n €08 £2'7
_lem{fx cosh a'ya(1—) cos m'ra(1—¢)

+ /2 sinh £1'ya(1—&) sin w2'7(1—8€)} cosh &1"ys sin /cz’rn]

B 2 —_ .
=T [—ﬂ(‘m—nﬂ—rﬁ (frsinh &1'7xE sin ra'7eé

0172

— f2 cosh r1'7x€ COS r2'14€) Sinh £1/yn COS £3'7n

__n(pimi+ pats)
0172

— J2 cosh x1'7x€ €OS x2'7uE) cOSh £177m SN ko' pn

2 2
+2?2~( J1cosh g1/ yuf sin ka’yné
2

(/1 sinh k170 Sin gy'ymf

— f2 sinh £1/74& €OS k2'ys€) Sinh £1'7 Si0 £2"1

_pril st
0172

+ f2 cosh £1'7aé Sin £a'72€) sinh &1 yn Sin £2'7n

(f1 sinh &1"yné COS k' ynf

+M;—p”—1 (1 cosh 17u€ COS ko yuf
1
+ fa sinh £1/rxf sin xs'7a€) sinh k1'7n COS £2' 7

+££1:ﬂ (f1 cosh k1" ynf COS k' 7uf
1

-+ fa sinh k1/yx€ sin ky'7s€) cosh k17w sin KZ,Tn:l

Si=l—-vlr?—ks?), Jo=2vzk1k2 .
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@ Case IV:
57:%[% sinth 7a o 7a(1 —&)+(1—v) (34 )¢ sinh 1 sinh 7a(1—8)
0 %
+(1—p)"(1—E)pm sinh 7u+2(1—1%) cosh rns}
g;vziﬁ{w—z—@il’r)—(g’ﬂ sinh 7 cosh 7aé—(1—) (3+v)(1—&) sinh 7 sinh 7u
0 7

—(1=)tys€ sinh ya(1—&)—2(1 —1?) cosh ya(1 -—5)}

(2) Fundamental Simultaneous Equations

Consider that the vertical displacements of edge-columns in flat slab yield.
Assuming that no up-lift of the plate at edge-columns occures, it follows that the
deflection of the point on plate, at which the plate is connected with the edge-
column, should be equivalent to the displacement of edge-column. Hence, a series
of compatibility equations are given as follows:

(wl~lv)5=0,v=7kA=dkA (k—_‘l} 29 Tty 1’)
W emtpory=din  (I=1,2,+++,5)

(23)
dra: vertical displacement of edge-column “%&” at AC side,

dis: vertical displacement of edge-column “/” at BD side.

Substituting Eq. (20) into Eq. (23), the fundamental simultaneous equation are
obtained as:

é[ﬂ IVRiA—ZS] Ag;lijB:aZGlr;w #DzdkA
i1 Ji=1
(24)
~1V S AV p g gETeIY ﬂDw
Z F R4 Z A]L R] =a*G, dLB
j=1

in which £=1,2,---,7; I=1,2,---,s;

g “’—Z @y sin nay:a sin nanea
n=1

oo
A =31 Q" sin nan;p sin #wyea
n=1

o0
=1 ;" sin napea sin naye
n=1

(=~
U= 00" sin nay;s sin nans
n=1

G =5 S) SO+ (— 1m0 YR o Sim e

m=1 n=1

GI=L 31 35 (04 4 (— 1m0 RET o sin npun
m=1n=1



Rectangular Plates with Two Opposite Sides Supported by Edge-Columns 85

@ Case I:

1 — . A
@5—_—§%— { wlm‘"’wz (—%:— sinh riys cosh /:zrmti sinh 2y cosh Klrn>}

01— (—"’i sinh sin—2 sinh & )}
n® w3 17n A2 i

Oo=—02F Qo=—0; .

@ Case II:
1 (1 / 4% 2@ =\ .. _ 2%
o= T {?1@’3<E2"‘V'y — Py ) sinh &y» cosh /:rn-{—;n—z}
1 (—1/ 47 2B =0\ ., _ 2% —
II__ _ &k
Qo= T I rd <E2-uy g > sinh %y ot cosh /crn}

OF=—F QU=—o.
® Case III:

1 = . .
O =—T1r {—Pﬁﬁp—&ﬂ sinh x1'yn cosh ICI/)’n""pl—Tls—M sin ky'yn COS ICZ,)’n}
0 1 1

=77 sinh k1'yn COS k2’ yn+

om 1 {przz-—mn
[1]

= prritpsTy
o1 01

cosh k1/ya sin Icz'rn}

TI1 111 1T 111
@a, =—Qo .Qa :‘—@0 .

@ Case IV:
1 {23+ . 2
(pgva {(1—(_5}%3« sinh y» cosh rn—l—;b;}
w_ 1 {_ 2(3+y) . 2 }
AN T sinh yx py cosh yn

v A4 v IV
¢a =—'.Q0 .Qa =—‘®0 .

Solving Eq. (24), the redundants R4 and R;® can be found. Then, using these
results, the displacements and the stresses of plate and columns in flat slab can
be given.

(3) Flexibility Coeflicients and Loading Terms

The coefficients I'is™, 457", I'i7’™ and 45" in Eq. (24) are called the flexibil-
ity coefficients, which depend on the sizes of plate and the co-ordinates of edge-
columns in the structures. The constants GL™" and Gi™"" in Eq. (24) are called
the loading terms, which depend on given loading on the plate.

a) Flexibility Coefficients

Removing from the actual structure the edge-columns at sides AC and BD,
the statically determinate and stable plate is obtained and is called the primary

structure (see Fig. 4). This primary structure may be now subjected to the unit
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load at the point “i” on the side AC of plate,
hereafter called “condition P:;u=1" (see Fig.
4 (a)). Assuming the positive direction of the
load P:s4 to be downward, the following nota-
tion is introduced;

dva=downward deflection of point “%2” at
the side AC of primary structure un-
der “ condition P;.=1".

On the other hand, if the deflection “dxa”

I N is supposed to be the vertical displacement of
Ve point “k” at the side AC of the statically in-
Fig. 4 determinate structure under the settlement of

edge-column “k”, which is simply supported
by the edge-columns “i” and “k” at points “i” and “%k” of the primary struc-
ture and hereafter is called “structure with edge-columns “i” and “k””, then
the unit load Pi4 in primary structure may be too considered as follows:

— P;.=vertical reaction of edge-column “i” in “structure with edge-columns
“;» and “k””, due to the settlement of edge-column “k”, dra (i.e.
R4=—1).

And the vertical reaction of edge-column “k” is equal to zero. For this statically
indeterminate structure with edge-columns “;” and “%”, the fundamental simul-
taneous equations are given by (see Eq. (24))

2 24’
D‘UX( dch) ‘. DZ{J

I v dkA

I~IVX( 1)___
Hence, it is said that Qa¥/ D)"Y in Eq. (24) is equal to the downward deflec-
tion of point “%k” at the side AC of primary structure subjected to the unit load
Pia=1 at pOil’lt “i7,

In a similar manner, the following expression for the flexibility coefficient
'Y can be obtained

2d*
¢Ds

i V=dus

where diz is the vertical displacement at point “/” in the side BD of primary
structure under the unit load, Pwu=1 (see Fig. 4(b)).

Hence, it is found that (2a¥/eD:)IFi" in Eq. (24) is equal to the downward
deflection of point “/” at BD side of primary structure subjected to the unit load
P.a=1. The expressions for the coefficients 4j;"" and 43" can be written as
follows for “condition Pjp=1", when the primary structure is subjected to the
unit load at the point “;j” on the side BD of the plate.

2a*
yD

I v
TV =da =diz .

Hence, it is found that
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2
jg—/ﬁ};w::downward deflection of point “%2” at AC side of primary structure

under “condition Pjz=17”,

2 .
f;—A}Zlvzdownward deflection of point “/” at BD side of primary structure

under “condition Pjr=1".

b) Loading Terms

When the primary structure is subjected to a given load, as in flat slab,
the fundamental simultaneous equations of Eq. (24) are rewritten as follows (see
Fig. 4 (¢)):

4
azG};IV_!;_g: dxa=0 '%G};W:dm
poe 4 —
azG§~Iv— gfl): diz=0 %G%~Iv=d13 .

Hence, it can be said that

4
%G}:I":downward deflection of point “k” at AC side of primary structure,

due to a given load,
2at

-‘u-l)“c—?i*wzdownward deflection of point “/” at BD side of primary structure,

due to a given load. p .
5.5 _ |
1 D = |
1II. NUMERICAL EXAMPLE R ) = I !
2 — ““rl
=10 —

(1) Flat Slab Subjected to Uniformly Distri- 9, =015 =~ o‘jf
buted Loading 1 1 =l $ ‘
Numerical example of the flat slab, as A Bl =30 ’y

shown in Fig. 5, is illustrated in this article. oSS o " ~
If it is assumed that no settlement takes o

place for all of the edge-columns, drs and diz T, 7

are equal to zero and the following simultane- p

ous equations can be obtained; Fig. 5

%;’IV %;IV _A]I:flv _Agflv RIA G{~IV

EYOrEY A g | | Re| | )
— _ - _ . =a*| _

};IV é;IV _ {;1" ___A;;IV ng }-vIV
r s g -z (ee)  lae

in which
flexibility coeflicients:

1~17 I~1V ;g W
u =210 sin? ,
7=l 3
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- O Ielv . MW . NT
V= 0}V sin “—sin— (=I'z"),
n=1 3 3
=3
I~T - 2nm
22 v=2 @I b sin? —-— ,
n=1 3
-3
I~1V T~IV nw
11 =E .Qo sin? s
=1 3
~ 2 1~ 2nrx nw -
V=S Vsin“o—sin o~ (=45,
n=1 3 3
I~ IV .o 2N
IV E I v Sln2 3 ,
FI~IV I~IV FLiv_ v I~V I~1V V=
I'i7 — Ay — A3 A =Ty,
FI~TV I~1 =1~ ~ TI~T I~ S~
12 =—d4 M » Féz IV=—A§2 v ’ A V= I' W 22 Ve

loading terms:

=1 51 SO+ (— L2 YR Fm sin 1o

m=1 n=1 3

G = S35 (O (ORI P sin 2

m=1 n=1 3

G =L 53 51 (O (O YR Fon sin 7

m=1 n=1 3
G=t ST SO (=1L YR Fn sin Lg“
m=1 n=1
_16py . ,omm . , M
an_mmﬂﬂz sin? == sin? ~~ .

a) In calculation of the flexibility coefficients and the loading terms

(25), it is assumed that

(1 '-)Jz)Ey+ (]. — Uy)Ez

G= A1 —vaw)

Chisyaki

in Eq.

(26)

Then, the value of (#'—s?) becomes positive and Case I in the analysis is applied

to this example.

The flexibility coefficients and the loading terms in Eq. (25) are calculated
for the case that the side length ratio, p=>b/a, is 1.0 and the Poisson’s ratio in &
direction, vz, is equal to 0.15, and the results are shown in Table 1 for each value
of 2 (=wfv.). Substituting the results into the simultaneous equations of Eq. (25),
we can find the redundants of edge-column in flat slab, which are shown by the
solid line in Fig. 6. It is noted that all of the redundants of edge-columns de-
crease when increasing 1. For example, the redundants in 1=1.5 would be less

11.29; than these in 1=0.7.
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Table 1
Flexibility coefficient L(t)ggga g
Flll’ —lel lel: _Zzll A111’ _flll Azll’ _f2ll G{ §§
4 lezr _]2‘2 Fllzr _21[2 Azrz» ‘“1—1212 Allzv _flIZ G% éé
g L2728 x 101 .2063 x 101 —.4818x 1072 —.4726x10-% .8382x10"2pp
.8 .2481 .1873 —.4013 —.3941 .7376
.9 .2283 L1721 —.3406 ~.3349 . 6576
1.0 —_ — — —_— —
1.1 .1982 .1492 —.2559 — 2522 .5422
1.2 .1864 .1403 ~.2254 —.2224 .4988
1.3 .1762 .1326 —.2002 -—.1978 .4620
1.4 L1673 .1259 —.1782 — 1772 .4305
1.5 .1592 L1199 —.1614 —.1598 .4030
1.6 L1521 L1145 - 1461 —.1448 .3790
1.7 . 1457 .1097 -.1330 —.1319 .3578
1.8 .1399 .1054 -.1216 —.1197 .3388
1.9 L1346 .1014 —.1116 —.1109 .3219
2.0 .1297 .0978 —.,1027 —.1022 . 3066
Substituting the redundants thus
obtained into Eq. (20), the elastic sur- RIR & o
face of plate in flat slab will be found. %l S 2 2883 5 . .
The curves in Fig. 7 show the elas- el %\‘\f\iﬁ SZE888%5%8%8
tic deflections of plate at £€=0.5 sec- o 38 ;f;j‘jf‘if’« s
tion for each value of 2. The maxi- ozl °F 228 2% m
mum deflection of plate takes place 011 S° 33523 = é
at the center of plate, which is shown J' a2 ¢ e of Ea (26)
1362 ¢ case of Eq.

by the solid line in Fig. 8. It is
noticed that the maximum deflection
of plate decrease with increasing a.

The relationships between 2 and

-+~ (0.1365) : case of Ea. (27)

JII!IJIIIIII!I

07 0.8 09 1.0 1.1 12 1.3 14 1.5 1.6 1.7 1.8 1.9
Pig. 6 Redundants of edge-columns

A

the moments, M. and M,, at the center of plate obtained from Egs. (21) and (22),
are shown in Fig. 9. The moment M. decreases with increasing 1 and the mo-

ment M, increases.

0 M 4 b4 1
I I 1 »
B A=2.0
=15 /
A =07
- case of Ea. (26)
w (X107%poa/Dy) e case of Eq. (27)

Fig. 7 Deflection at £=1/2-section

Wnas
L2 Poll
a2 o
B @ g
2 8 8 B o o~
02 I & B B D o
E23STEEETTT o o o
- = T 2223338288 F
= - 2 d e mwm g qy
04— . S A= ¥ S T
- =% o eaa sz e2g
> R
0'3—§|g§ ﬁgc\l
= & 2 X [
0z c3ex8EZgge
o o S g 9 a
0.1 c o o
0 TN R NN AU SR SN RSSOV I AU O M |
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2.0

Case of Eq. (26)
Fig. 8 wmax

————— Case of Eq. (27)

A



90

MMy}
(X107 pot?)

0.7 |—
0.6 e
05 |-
0.4 - ‘r%,—‘/——""” g
0.3 ’
0.2 —
0.1 -
S S I O

1

Case of Eq. (26).
Case of Eq. (27)

I I D

(X107 poa?)

0

Ll 1.y

0.7 08 0.91.0 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1.9 2.0

Fig. 9 Bending moments M, and M, at the

center of plate

M,

—0.6
—0.4
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—0
0.2
0.4
0.6

TTTT T L

Fig. 10

b) In a concrete slab with two-way reinforcements in the directions x and
y, we can assume the following expression for G recommended by M. T. Huber;

T

~E:E,

(14~ vavy)

@7

Then, the value of (#—x?) is equal to zero and the problem falls into Case II.
Using Eq. (27) and solving the same problem as the preceeding article, we
have the flexibility coefficients and the loading terms in the fundamental simul-
taneous equations for the redundants of edge-columns in flat slab, as in Table 2.
And, the curves for redundants of edge-columns, deflections and moments of
plates are found as shown by the dotted lines in Figs. 6, 7, 8 and 9. Fig. 10
shows moments of the plate in the y direction.

Table 2

Flexibility coefficient Loading

ry, —ay | ry, -4y | AL -rY | a3, -Tf Gy, Gt

ry, —4g | ry, -4y | 4, -ry | a4y, -T} G, G}

7 | 2736x 10 | .2066%10-1 | —.4831x10~7 —.4735x10-% .8406 10-2po

8 | 2484 1874 — 4017 —.3044 .7386
9 | .2284 1722 —.3407 —.3350 6593
1.0 | .2120 1597 —.2934 —.2889 5957
1.1 | .19082 .1493 —.2559 —.2502 .5436
1.2 | .1866 1404 — 2256 —.2226 5002
1.3 | .1766 .1328 —~ 2007 —.1981 4634
1.4 | .1678 .1262 —.1799 —.1777 .4319
1.5 | .1601 .1204 —.1623 — 1605 4045
1.6 | .1533 .1152 —.1473 —.1457 .3806
1.7 | .1472 .1106 —.1344 —.1330 3504
1.8 | .1417 .1064 ~.1231 —.1219 .3406
1.9 | .1367 .1027 —.1133 —.1123 .3237
2.0 | .1322 .0093 —.1047 —.1038 .3085
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(2) Settlement of Edge-Column

Using the method proposed in this paper, the problem of unequal settlement
of edge-columns in the structure can be also analyzed easily and exactly.

When the edge-column “1” at the side AC of the plate as in Fig. 5 under-
goes a vertical displacement of “di.” and the rest of the edge-columns undergo
no displacements, the fundamental simultaneous equations for the redundants of
edge-columns in the structure can be written as follows;

BYOrEY A7 A5 (R 1
S Y g a5 | | Re | up. |0
[~V L~ gLl gLy ) R.® Y s 0 28)
r s g -2 LR 1

Assigning as an example ¢=1.0, v,=0.15 and i1=1.5, and using Eq. (27) for G,
there results

RiA=—T71.942 % (D:d1afa®),  Ry*=53.878x(D.d1ala*) } 29)

Ri#=1.327 x(D.d14/a?) , R:2=0.751 X (Ded14fa®) .

Substituting Eq. (29) into Eq. (20), the elastic surface of plate in flat slab can be
expressed as

wh= _2d1A[§ {@H < —~71.942 sin 5"
n=1

+53.878 sin —21;-’5>

——!J“<1.327 sin %

+0.751 sin gg—”>} sin nmy] . @0)

Numerical results for each values of & and 5 are shown in Fig. 11.

IV. SUMMARY AND CONCLUSION

The elastic constants for orthotropic plate are E., Ey, vs, vy and G. From
the reciprocal property of elastic material, the following relation exists;

Ea:/l;;y= Vr/lJy .

As the result, it is necessary to determine experimentally four independent con-
stants to specify the complete material properties for an orthotropic plate.

Orthotropic plates shall be classified into a natural orthotropic plate and a
plate whose orthotropy is introduced artificially. An example of the former is
a wooden plate and the latter covers reinforced concrete slab, a plywood, a slab
with ribs, a corrugated sheet, a lattice structure and so on. Case I in analysis
is applied to a celular deck plate with large twisting rigidity, and Case II, to a
reinforced concrete slab. A plate with smaller ribs and a corrugated sheet should
be solved by using Case III in analysis.
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The paper presents the result of an analysis for a flat slab, which is simply
supported by edge-columns at two opposite sides on plate and is subjected to an
arbitrary transverse load. The merits of this method are as follows:

(1) The redandants of edge-columns can be found easily by solving the
fundamental simultaneous equations of Eq. (24).

(2) When the displacements and stresses of the primary structure which is
obtained by removing from a given structure the edge-columns are known, the
necessary effort in the analysis of a given structure will be the same as that for
frames.

(3) This method can be applied to such a problem as the unequal settlement
of edge-columns in flat slab, as shown in the numerical example, and may be
developed into obtaining the influence surface of the displacements and stresses
of a given structure.

The bending moments of plate on the edge-column in the structure are essen-
tially infinite, since the edge-column is regarded as the point-supports (see Fig. 10).
On the other hand, the plate in such a structure is supported by the columns
with the finite width, in practice. Therefore, it will be necessary to consider
that the bending moments at the edge of the cross section of column should be
used for the design of the structure, and so on; on which problem may be in-
vestigated with the research on the analysis of the flat slabs considered the flex-
ibility of columns, after this report.
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