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1. INTRODUCTION

Many papers on the limit analysis of grillage girders and plates have been pub-
lished. The exact evaluation of limit loads of such structures remains, however,
as a difficult problem due to its nonlinear characteristic and then the general
method of analysis for the structures has not yet been formulated. The lower
and upper bound theorems of limit analysis provide a powerful weapon for the
determination of limit load. According to the bound theorems the numerical
determination of limit load can be reduced to an optimization problem. Since
1956, for the frame structures such as trusses, continuous girders, ridgidly con-
nected frames and so on, the numerical solutions have been studied by the method
of transformation of the limit analysis problems into linear programing ones!»,%:9,
While, for plate problems the similar method was studied by Koopmann and
Rance® in 1965 who dealt with axially symmetrically loaded circular plates and
uniformly loaded square plates in which the linearlized yield criterion of Tresca
type was used. Recently, for the variously loaded rectangular plates obeying
Mises’ yield criterion P. G. Hodge and T. Belytschko® investigated the limit
analysis problems by transforming to the nonlinear programming ones that could
be solved by the Sequential Unconstrained Minimization Techniques developed by
Fiacco and McCormick, and gave the most reliable values among the already
known ones of the limit load.

In this paper, a general method for the determination of the limit loads for
grillage girders, circular plates and rectangular ones which are made of the per-
fectly plastic material obeying Mises’ yield criterion is studied. The method is
based on the lower bound theorem of limit analysis. If the stress fields are ex-
pressed by the stresses on the definite points of structures and the equilibrium con-
ditions are expressed by suitable linear algebraic expressions, the limit analysis
problems can be transformed into mathematical programming ones in which linear
equalities representing the equilibrium conditions and quadratic inequalities re-
quired by reason that the stress fields must satisfy the yield condition are taken as
constraints and the factor of load expressed by a statically admissible multiplier
is taken as an objective function. On account of the convexity of yield surface
the problems become convex programming ones which may be solved by the
cutting plane method developed by J. E. Kelley”. The method presented herein is
developed by replacing the limit analysis problems by such the convex programm-
ing ones. The method is justified by several numerical examples in which the
calculated limit loads by this method are compared with the already known ones.

* Lecturer, Department of Civil Engineering, Osaka City University.
**k  Professor, Department of Civil Engineering, Osaka City University.
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2. GRILLAGE GIRDERS

2.1 Equilibrium conditions

Assuming that the cross section of each member between two adjacent joints
of a grid is uniform and external loads are applied only at the joints of a grid,
the plastic hinges may be formed at either end of members. Hence it is suffici-
ent to make equilibrium equations that the bending moments and the twisting
ones acting at the joints of a grid are assumed as variables. Denoting the fully
plastic moment of member by M,, the fully plastic torque by 7o, the panel length
by 4, the length of reference member by L and the fully plastic moment of re-
ference member by M,, and introducing the non-dimensional quantities such as
m'=M/M,, ' =T|Ty, p="T/ My, p=M/M, and 2=L/4, the equilibrium equations

. at an arbitrary joint of a grid as shown in

Fig. 1 are given as follows:
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where the position of member is identified
by the double subscripts and the first one
indicates the relevant joint of a grid.

In general it is advantageous to use
non-negative variables for the application
of mathematical programming. Since it is
evident from the yield inequalities (3) that
the variables m’ and # can take the values between —1 and +1 respectively,
Eq. (1) can be rewritten by introducing the new variables m=m'+1 and {=#"+1
as follows:

Aingean(Wan— Mins )+ A spps M2 — W ji )+ AempamWhim— Waas)
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where ¢; denotes the ratio of the load P:L/M, to a certain reference load Py and
the proportional loading is assumed for the present.
2.2 Yield condition
The yield condition of a girder subjected to the actions of both bending and
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twisting moments may be expressed approximately as follows:
mitpi=1,

Though this expression represents merely a lower bound yield condition for the
various cross sectional shapes, in the subsequent discussion it is used as a proper
yield condition. Then in order that the yield condition is not violated at the
joint ¢ shown in Fig. 1, the following four inequalities must be satisfied:

(Mmin—12%+En—1)2 <1,
(mum_l)z“i'(tzm—l)zgl , }

(3)
(mis—17+(—11 <1, j
(Min—1)2+(tin—1)2gl .

Fig. 2

2.3 Boundary conditions of stresses

The support conditions of grillage girder are considered in two cases, the
first is the condition without a transverse girder at the supported ends and the
second with a transverse girder.

(1) The case without a transverse girder.
Simply supported end: m=1, 0<t<2.
Fixed end: ) (m—-114+—-1Y<1.
(2) The case with a transverse girder
Simply supported end (referring to Fig. 2):

= Brottrofro -+ trgrg— trsrs= — Broftro+ trq— Urs (4)
Brattrabra— Brstirstrs— tiroitirs = Brgptrg= Brsftrs— ftro ,
(mr—1)+(tr0—1y <1,
(Mrs— 1)+ (s — 1) <1,

(mrg—1) (g —1)<1 .

2.4 Application of mathematical programming

In the theorem of limit analysis any statically admissible and safe stress
fields must satisfy the eqilibrium conditions (2), the boundary conditions (4) and
the yield inequalities (3) at all joints of a grid (including the boundary points). The
theorem of limit analysis shows the fact that the actual moment stress field al-
ways corresponds to a larger value of the collapse load than the other admissible
and safe moment stress fields. Hence the problem of searching the actual moment
stress field can be regarded as a problem of mathematical programming in which
the expressions (2), (3) and (4) are taken as constraints and the reference load
P, as an objective function.

Now denoting the number of members of the grillage girder by w and the
number of the eqilibrium equations consisting of (2) and (4) by v, the constraints
may be expressed in the following matrix forms:

(@] {ms} +1bud{te}+ Po{q: y={c:} , (5)
1 X1 X1

PX2W 2wX1 VXW WX
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{m Y+ Tl {8} —2(mp—2 Tud {1} +{1}<{0) , (6)

X1 2WwXw wx 2wXw wx1 2w

where

[@i5], [bix] and {c:} are the matrices determined by the geometric configura-
tion of the structure and the cross sectional shape of the members,

[Tx] is a transformation matrix necessary to make the orders of the matrices
equal since the number of twisting moments is reduced to one half of that
of bending moments by the relations #:;=tj, tin=tn:,+ -+ in Eq. (1),

{I} is a column vector, all elements of which are unity,

{0} is zero vector.

Thus, the problem reduces to the determination of the maximum value of Py un-
der the constraints (5) and (6). Since the constraints (6) mean that the interior
of unit circles in m, t-coordinates is taken as the permissible domain, this problem
may be considered as a problem of convex programming whose solution may be
obtained by the cutting plane method developed by J. E. Kelley”. In the cutting
plane method a linear programming problem is utilized repeatedly by replacing
the nonlinear constraints by the suitable linear ones. At present the convex
polyhedron {S=(m, ) 0<m<2, 0<¢<2} which encloses the actual permissible do-
main may be chosen as the first approximation of the permissible domain. The
maximum value of load P, in the first approximate permissible domain can be
searched by means of solving the following linear programming problem:

[aul{ms} +bud{te}+ Po{g:sy={c:} ,
{0y <{m;}<2{I},
{0y <{ty<2{I},

max. P, should be required.

(7

Thus the optimal solution {m;}!, {{x}'* and the maximum value of load Py, which
is denoted by P, in the calculation of the first step can be evaluated by the
usual simplex method. And in order to know whether the moment stress field
given by the solution {m;}!, {tx}' satisfies the actual yield conditions or not, the
following expression must be examined:

{05 ={m Y +[ Tt} —2{ms}' = 2A Tl te}* +{I } . (8)

If {3;}'<{0} is satisfied, the load Pn is the maximum lower bound and proved to
be the actual limit load due to the uniqueness theorem of limit analysis. Where-
as if {6;}'<{0} is not satisfied, {m;}', {fx}' is not the actual solution and then the
new linear programming problem must be solved with the following additional
constraints called as the cutting planes (the second step):

(il + T 11 }(t) S o)

where
{m;} is the column vector consisting of the elements of {mj;}, which corre-

* The optimal solutions are distinguished from the variables by marking with a numeral
letter on the right shoulders.



A Numerical Method for the Limit Analysis of Grillage Girders and Plates 97

spond to the positive components 8! (1=1,2, 3,---, 7, ¥<2w) of the matrix
{0;}* in (8),

{t,} is the column vector consisting of the elements of {#}, which correspond
to the positive components §;' of {3;}' in (8),

[d:a] is the diagonal matrix, its diagonal elements dun=m,'—1 where m,' shows
the components of the optimal solution {m.},

[d,,] is the diagonal matrix, its diagonal elements d,,=¢,'—1 where #! shows
the components of {¢,}!,

[T:,] is the transformation matrix with the same character as [7x] in -the
expression (6),

{ey={m P +[T/’ Kt P —{1}.

By using the optimal solution {m;}?, {f}* at the second step which may be eval-
uated easily by the dual simplex method, {§;}* is evaluated in the similar manner
to (8). And if {3;}2<{0} is satisfied, {m;}?, {tx)' represent the actual moment
stress field and the corresponding load Pu the actual limit load. If {8,}°<{0} is
not satisfied, {m;}?, {#}* does not represent the actual solution and hence another
solution must be searched in the new linear programming problem in which the
new constraints analogous to (9) concerning the positive components of {§;}* are
added further, and consequently {m;)}, {fx}® and P at the third step are ob-
tained. Repetition of the similar computation gives the following relations™:
Py > P> Pys- - - > P> Py, and Pe, approaches the actual limit load P, as the iter-
ation process increases in number.

2.5 Estimation of error in the numerical analysis

Continuing the iteration infinitely, Py, tends to the actual limit load Py. In
practical calculation, however, the iteration must be terminated at finite times
and it is, therefore, necessary to estimate the difference between Pi, and Ps.

Now calculating {4} from the optimal solution {m;}*, {#}* found at the nth
iteration and designating the maximum component of {4} as d.* and the bend-
ing moment and twisting moment corresponding to d.* as m*, #.* respectively,
the difference between P, and P, can be estimated as follows:

Substituting m.* and #,* into the left side of the corresponding inequality of
(3), one obtains

(¥ — 1 (fn* — 1) =1+00* .

From the relations m,* =m,*—1 and #* =t.*—1, the moment stress vector (m.*,
t.*') is placed on the circle with the radius ~/1+d.* and the center at the origin.
Hence the moment stress field (1/8/T46.* {ms}", (1/~/1+6.%){t:}* satisfies the yield
inequalities (3) and the corresponding load (1/+/1+.*)Pu is proved to be less than
or equal to the actual limit load P, according to the lower bound theorem of limit
analysis. Since Pw>P, as shown in the previous article, the evaluated load Pu
is larger than the actual limit load Ps by {1—1/v1+6:* }Piw=(3*/2) x Pin at the
most. Thus, for the practical calculation of limit load, if the error is required to
be less than or equal to e%, it is sufficient that the iteration is terminated when
n*<2¢/100.
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3. CIRCULAR PLATE SUBJECTED TO AN AXIALLY SYMMETRIC LOAD

3.1 Equilibrium conditions

The equilibrium equation of circular plate subjected to an axially symmetric
load is given as

%@M)-N: _SD »Pdr (10)

where
7 is a distance from the center of plate,
M is the bending moment in the radial direction,
N is the bending moment in the circumferential direction,
P is the intensity of load.

Introducing the non-dimensional quantities such as p=PRYM,, m'=M|M,, n' =
N/M, and x=7/R where M, indicates the fully plastic moment per unit length of
plate and R the radius of plate, Eq. (10) can be rewritten as

x
gd;(xm’)—n’:——go xpdx . an
In the application of mathematical programming the equilibrium conditions must
be represented by a suitable algebraical expressions. In this paper, the differ-
ential equation (11) is approximated by a finite difference one. Denoting the
spacing of mesh by 4 and the total number of mesh by s+1, the following finite
difference formula with the terms of order O(k!) is used:

" — e’ +8mj’ —8my1 +mrsy’
J 12k

7

+my —ni+h? > kpr-1=0 (12)
k=1

at j=0,1,2,3,---,5—2

where h=4/R.

At the mesh points near the boundary of plate, i.e., s and s—1, the above
formula requires the fictitious points situated in the exterior side of the boundary.
Since this problem has originally more variables than the number of independent
equilibrium equations (including the boundary conditions), the introduction of the
fictitious points must be avoided. Then the following formulas with the terms
O(k?) may be used for the mesh points near the boundary:

. iyt ’ R o 7
]h 2m 1 374’lj6;6m; 1 —Mj—3 +wmy —nyg +h 2 ka:O at j=$—1 , (13)
k=1
_ ’ iyl ! . ot 7
=1l £ 18m, o Mt F 2 | b S ke =0 at j=s . (14)
k=1

The yield inequalities (16) show that the variables m’ and »’ take the values be-
tween —2/+/3 and 2/~/3. Then by introducing the non-negative variables m=
m'+2/v/3 and n=n'+2/~"3, Egs. (12), (13) and (14) can be expressed collectively
as follows:

Ll —[uln+onfgrd={0) (4o
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where p, means the reference load to be used for non-dimensional expressions,
and s’'=s+1.

3.2 Yield conditions

Assuming a sandwich plate obeying Mises’ yield criterion, the yield condi-
tion for the element of plates is expressed as

M*—MN+NI=M?.

By introducing the non-dimensional variables m and n, the above expression is
reduced to

(n=F5) = (n=T5) (- F5) + (-7 =2

V3 ~3 ~3 J3) T
Hence in order that the yield condition is not violated at every mesh point, the
following inequalities must be satisfied:

() O} ()= mi) = lnsh 5 LTV <{0} 16)

3.3 Boundary conditions of stresses
(1) Along the simply supported edge
2 2 2
WL_/?’ J§_1SM£I+J§_ .
an
(2) Along the built-in edge

o535 o-35) =

3.4 Application of convex programming

Determination of the limit load of circular plates may be regarded as the
problem of convex programming having (15), (16) and (17) as constraints and the
reference load p, as an objective function. The application of the cutting plane
method to solve this problem is intended. The following linear programming
problem is dealt with at first:

(et mb— bl +pulad=(0},  (O)<{md<—=(I},
{0}3{%;}37473»{1 T, max. Py should be required,

where the above equalities include both (15) and (17).

The optimal solution {m;}!, {#;}' can be obtained by use of the usual simplex
method and consequently {0;}! is evaluated as follows:

(o= m Y~ (momsP+ (Y~ (moY =2 4T ) 18)
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If {653 <{0} is satisfied, {m;}!, {n;}' is the actual solution and p. (=max. ps) be-
comes the actual limit load. But, if {4;}'<{0} is not satisfied, the new linear pro-
gramming problem must be solved with the following additional! constraints con-
cerning the positive components 8, (1=1, 2, 3,---,7, #<s+1) of {5;}..

[du]{%’h}"l‘ [‘711]{”1} .<_{f}

where
{m.} is the column vector consisting of the elements of {m;}, which corre-
spond to &;! in (18),
{n:} is the column vector consisting of the elements of {»;}, which correspond
to 8! in (18),
2

[d::] is the diagonal matrix, its diagonal elements du=27’l’lal*—%xl“\/—§ where
ma!, ' show the elements of the optimal solutions {m;}! and {z}' re-
spectively,

2

[d:] is the diagonal matrix, its diagonal elements di=2#n,1—m,!— J@’

(Y= tmat o+ (my = fmm Y —-(1.

Continuation of the iteration is required similarly as in the case of grillage girder
problems until a stable solution is obtained.

4. RECTANGULAR PLATES

4.1 Equilibrium conditions

The equilibrium equation of rectangular plates subjected to a uniform load
P is given as
*tM, My | PM,

axt 2oxoy Tove = F

where M., M, and M., are the bending moments in X-direction, Y-direction and
the twisting moment respectively. Denoting the fully plastic moment per unit
length of plate by M,, the fully plastic twisting moment per unit length of plate
by To and the reference length of plate by L, and introducing the non-dimensional
quantities m/=M/M,, n'=My/M, t'=My|Ty, x=X/L, y=Y/[L, p=PL*M, and
B=Ti/M,, the above equation is rewritten as

a'm’ ki atn’

ozt Pazay T oy

+p=0.
In the same manner for circular plates the differential equation can be approxi-

mately expressed by a finite difference equation as follows:

1
124.*

——m{,j_z—l—16m{,1_1—30m{'j+161'}1{,]“—m{,j+2+a2(~n{_2,j+16%{_14—30%{4

+16n] 11, ;— 1] 1s ) —af(—108] 14, 41+ 1081 ;41— 10804 ;4
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7 4 .
— i, 5-2— e, j-0t +0i5,5=0,

at i=2)3:4:"'7q_27 j=2y3y4‘""7r_2’ (19)

1

— ! 14 4 ! 4

e mi,j-—l——27n'£,j+7ni,j+l+a2(ni—1,j'"2"i,j+ni+1,j)
&z

(44
"7‘3(‘“%/“,1“+t{—1,j+1—‘t{—1,j—1+t{+1,1—1)} +i,:=0
at i=1,q—1, j=1,7r—1, 20)

where 7 and ¢ are the numbers of mesh in X and Y-directions respectively and
a=14:/4y as shown in Fig. 3. In the finite difference formulas of (19) and (20), the
smaller terms than the term O(#*) and O(h?) respectively in Taylor’s expansion
have been omitted where h=4./L. or 4,/L,. The two types of approximation
like above must be used by the same reason for the circular plate problem*, By
introducing the non-negative variables m=wm’'+2/~3, n=#n'+2/~3 and t=¢+1,
the equality constraints corresponding to Eq. (5) of the grillage girder problem
may be made.

';l

Fig. 3 Fig. 4

4.2 Yield conditions

Assuming that the plate considered now consists of a sandwich plate obeying
Mises’ yield criterion, the yield conditions in terms of bending and twisting mo-
ments are expressed as follows:

(m __2_>Z_ <m _L)( ._L>+(n_ ———~2——>2+(t~ —1r<]
[ '\/g iy ’\/“3— N5 J'g‘ iyJ J@ i, =
at i=1, 2, 3,"', Q"‘l, ]:1) 2: 3:""7'—1 . (21)

* Mixed using of such two finite approximations of different accuracy may seem to be
questionable. However, some numerical examples for the square and the rectangular
plates with simply supported or clamped edges show that the results obtained by using
partially the finite difference formula with the terms of higher orders such as (19) are
more excellent than ones obtained by using the usual formula (20) alone.
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4.3 Boundary conditions of stresses
(1) Along the simply supported edges (perpendicular to X-axis)

m:;—/%, ( «/3>+(t 1<l .

(2) Along the built-in edges

-5~ o)t

(3) Along the free edge (referring to Fig. 4)
2 m ot
=73 (ay 26.9:) =0.

Transforming the above differential equation into a finite difference one in which
the terms of O(k?) are taken in consideration, the following expression is obtained
at a mesh point s in Fig. 4:

Zanq—l,s—0.57’lq——2,s+‘8tq,s—1““th,s+1='\/ga .
While the equilibrium equation at the point s is given as

Ma,s~1—2Mq, s+ Mg,s41+ 20 H¢-1,s+0.5aB

2

4
. (l’q,s—l—l‘q,s+1+4fq—1,s~1—47fq~1,s+1-frz,s—1+tq—2,s+1)=J§—a
And the yield condition at the same mesh point is expressed as

4.4 Application of convex programming

In quite similar manner to circular plate problems, the nonlinear inequalities
are replaced firstly by the following linear inequalities and the iterative approach
by means of solving the linear programming problem is dealt with as before:

{O}S{m;}é-j%{l} ,

<<,
Oy<(ty<2(1} .

From the optimal solution {m;}!, {n;}* and {#;}' at the first step of calculation,
one have

{8 ={m P+ {nit Y} —{mms} +{{;*}
2 2 1 1 __3_
—ﬁ{mj}‘—ﬁ{ﬂj} —2{t;}* + 4{I }. (22)

If {8;}'<{0} is not satisfied, the new linear programming problem must be solved
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with the following additional constraints concerning the positive components ;!
in the matrix {5;}":

<2Wl11—7ln—-:/2—§>m41+ <2nu—7}¢n—%>m+2(If11—-1)l‘z

4
_<_mu(7}’lu—nn)+nu?+i112+'3— .
where mia, 712 and #; represent the components of {my;}', {ns}3 and {#}' corre-
sponding to &' in (22) respectively, and m., #n: and £ show the variables corre-
sponding to s, #u and f1; respectively.

4.5 Errors in the numerical analysis

In the numerical analysis of the limit loads of circular and rectangular plates,
the errors may occur mainly during the following processes: (1) an elimination
procedure in the simplex method, (2) using a finite difference equation instead of
the differential equation, and (3) terminating the iteration at certain finite times.
The error by (1) may be removed almost by performing the operation with many
figures, for instance, a double precision-operation in a digital computer. The
error by (2) decreases as the spacing of mesh in the finite difference approxima-
tion becomes smaller. In practice, however, the considerably coarse mesh must
be used on account of the restricted capacities of the memory of computer. The
magnitude of error due to the coarse mesh can not be estimated precisely. From
some results of the numerical examples, however, the considerably refined solu-
tions may be expected by use of the finite difference formula with the terms of
higher order such as Eq. (12) or Eq. (19). Finally the error by (3) may be esti-
mated in the same manner as in the case of grillage girder problems. Denoting
the maximum value of the components of {3;}*, which is obtained after the n
times of iteration, by d»*, the corresponding
load pos is larger than the actual limit load
po by 6.%/2x100% at most.

5. DETAILED PROCEDURE OF
CALCULATION

If the sufficiently reliable limit load is
required in the problem, it can not be avoid-
ed that the number of iteration becomes large
and the number of rows of the simplex tab-
leau becomes much larger. By reason of the
capacities of the memory of computer the
size of simplex tableau must remain constant l’ lm%
during the iteration, and then some advices \S s ""
must be given in the practical calculation. :)

"‘6 \L ’ v:)mx
For the simple case of a square grillage gird- / e N "}?ﬂ

7"1

er with fixed ends under a uniform load as
shown in Fig. 5, the detailed procedure of / " "h
calculation is illustrated. C’T,,." = lo= =120

Assuming that the members are of the et Bl
uniform cross section of square type and Fig. 5
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consist of the material obeying Mises’ yield criterion.

T, 4
="M, 7373
The expression (7) gives
w1
s 0 0
-5 5 2 1-2 0 1 O0On|ms 0 0 2
-2 2-1 0 1 1 0 1] m 8 tsz
001 0-1 0 0 0 0jms( " |3v/7 O{te}zg%’
0 0 0 0—-1 1 0 O0Jfm 4 4 0
" 33 3v/3
s
0 my 1 @4)
0 (2] 1
0 M3 1
0 my 1 0 ts 1
0 (=) ms =2 (- {olgite}—z{lz’
0 g 1
0 my 1
0 ms 1
max. <Po=z§—2"=m1—mg> .

Since in the above linear programming problem some equalities are included, it
must be solved by the so-called two-phase method® in the simplex method. Table 1
shows the basic tableau* for calculating a feasible solution, where ii~21, are slack
variables, m~p are artificial variables and {=—m—pm—m—wm is taken as the
auxiliary objective function. By means of the simplex algorithm starting from
the basic tableau, the relations m=m=pm=m=0 and a feasible solution are ob-
tained. Since these relations must be kept in the subsequent processes, the four
columns belonging to i, g, #s and g are excepted from the tableau when these
artificial variables are in the set of the non-basic variables. And by the simplex
algorithm at the second phase the first optimal solution is obtained and conse-
quently {6;}! is calculated. These results are shown in Table 2 and the first row
of Table 5. If the error in the final result is required to be within 0.25% in
magnitude, the condition §*<0.005 must be satisfied. The values in the third,
the sixth and the eighth rows in {8;}' do not satisfy this condition and the fol-
lowing additional constraints corresponding to (9), must be added:

1.0000 0.0  0.07( ms 1.0 0.0 04131 007 (1) 1 4.9969
{o.o 0.8619 o.oH ms }J{o.o 1.0“0'O 1'0”;}35{ 6.4667} (25)
00 00  0.0d% my 0.0 1.04° 7 : ¢ 7.0000

* Tn this tableau the objective function transformed into one of standard type is pre-
sented and the part of unit matrix is omitted from the tableau.
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Table 1
Nonbasic variables
So w1 ms ms ‘ "y ’ M l Mg 1 my ‘ mg i3 13
¢ —-5.539%6 | 7.0 |—-8.0|—1.0| 0.0| 2.0 |—2.0(-1.0|{—1.0} —2.3094 0.76980
“1 2.0 —-5.0| 5.0} 2.0| 1.0|—-2.0} 0.0 1.0| 0.0 0.0 0.0
2 2.0 -2.0| 2.0{-1.0| 0.0 1.0 1.0 0.0 1.0 0.0 0.0
73 1539 0.0 1.0 0.0 {—1.0| 0.0| 0.0 0.0 0.0 1.5396 0.0
7 0.0 00| 0.0 0.0] 0.0{—~1.0| 1.0 0.0 0.0 0.76980| —0.76980
8 A 2.0 1.0 0.0| 0.0 0.0{ 0.0| 0.0| 0.0| 0.0 0.0 0.0
fg A2 2.0 0.0 1.0 0.0{ 0.0} 00| 0.0 0.0 0.0 0.0 0.0
§ 23 2.0 0.0{ 00, 1.0 0.0 0.0} 0.0 0.0 0.0 0.0 0.0
2 24 2.0 0.0 0.0 0.0 1.0 0.0/ 0.0| 0.0 0.0 0.0 0.0
S 25 2.0 00| 0.0y 0.0{ 0.0 1.0| 0.0| 0.0 0.0 0.0 0.0
2 2.0 0.0 0.0y 00| 0.0 0.0 1.0| 0.0| 0.0 0.0 0.0
A7 2.0 0.0 0.0; 0.0 0.0| 0.0 0.0| 1.0| 0.0 0.0 0.0
As 2.0 0.0 0.0} 00| 0.0 0.0 0.0] 0.0 1.0 0.0 0.0
A9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
10 2.0 0.0 00| 0.0| 0.0 0.0f 0.0 0.0 0.0 0.0 1.0

Note: So means the constant terms in expressions (24).

Table 2

Nonbasic variables

So 23 30 A3 A1 A7 A4

Py 0.63597 0.13333 0.10264 0.13333 0.06667 0.13333 0.06667
my 2.0000 -0.00000 0.00000 0.00000 0.00000 1.0000 |—0.00000
s 1.8619 |—0.40000 0.46188 0.60000 0.30000 0.10000 |—0.20000
ms 1.4101 —0.33333 {—0.25660 0.66667 |—0.16666 0.16667 0.33333
my 1.3640 —0.13333 }—0.10264 |—0.13333 0.93334 |—0.13333 |—0.06667
my 2.0000 0.00000 0.00000 0.00000 | —0.00000 0.00000 1.00000
A3 0.63597 0.13333 0.10264 0.13333 |-—0.93333 0.13333 0.06667
2.0000 1.0000 0.00000 0.00000 |-—0.00000 0.00000 0.00000
A 0.13812 0.40000 |—0.46188 |—0.60000 |—0.30000 |—0.10000 0.20000
A5 0.58993 0.33333 0.25660 |—0.66667 0.16667 |-—-0.16667 |—0.33333
ms 2.0000 -0.00000 0.00000 1.0000 0.00000 0.00000 0.00000
13 1.4131 0.08660 0.06667 0.08660 |—0.60622 0.08660 0.69282
m 2.0000 —0.00000 |~—0.00000 |—0.00000 1.0000 —0.00000 |—0.00000
A9 0.58693 |—0.08660 |—0.06667 |—0.08660 0.60622 |—0.08660 [—0.69282
ts 2.0000 0.00000 1.0000 0.00000 0.00000 | -—0.00000 0.00000

Basic variables
3
S

Making use of the linearlity of simplex tableau, the new linear programming
problem may be dealt with as a problem of dual type® which is represented by
adding the following part [A4] to the tableau of Table 2:

[Al=[E)-[FI[H

3Ix7 3x5 5XT

where



106 Sonoda, Kurata

Table 3

Nonbasic variables

So 28 210 23 A1 A7 A4

By 0.63597 0.13333 0.10264 0.13333 0.06667 0.13333 0.06667
my 2.0000 | —0.00000 0.00000 0.00000 0.00000 1.0000 | —0.00000
mg 1.8619 | —0.40000 0.46188 0.60000 0.30000 0.10000 |—0.20000
ms 1.4101 —0.33333 | —0.25660 0.66667 |-—0.16666 0.16667 0.33333
ma 1.3640 |—0.13333 |-—-0.10264 |—0.13333 0.93334 |—0.13333 |—0.06667
my 2.0000 0.00000 0.00000 0.00000 | —0.00000 0.00000 1.0000

i1 |=—0.08532 |—0.03578 |—0.02754 |—1.03575 0.25042 |—0.03578 |—0.28619
2.0000 1.0000 0.00000 0.00000 |—0.00000 0.00000 0.00000
A1z | —0.37142 0.34476 |-—1.39810 |-—0.51715 |—0.25857 |—0.08619 0.17238
i3 |—0.49999 |—1.0000 |—1.0000 |—0.00000 0.00000 |—0.00000 {—0.00000
ms 2.0000 —0.00000 0.00000 1.0000 0.00000 0.00000 | —0.00000
t3 1.4131 0.08660 0.06667 0.08660 |—0.60622 0.08660 0.69282
m 2.0000 | —0.00000 |—0.00000 |—0.00000 1.0000 |—0.00000 |—0.00000
Ay 0.58693 |—0.08660 |-—-0.06667 |—0.08660 0.60622 |—0.08660 |—0.69282
ts 2.0000 0.00000 1.0000 0.00000 0.00000 0.00000 0.00000

Basic variables
3
S

Table 4

Nonbasic variables

o g A13 n i A 24

Py 0.57544 0.02963 0.04955 0.06436 0.09890 0.12873 0.02983
my 2.0000 —0.00000 0.00000 0.00000 0.00000 1.0000 {-—0.00000
ms 1.589 —0.86665 0.22296 0.28964 0.44506 0.07928 | —0.36578
ms 1.4923 {--0.08204 |-—0.13716 0.32182 | —0.00549 0.14364 0.14913
my 1.4246 | —0.02963 | —0.04955 | —0.06436 0.90110 |-—0.12873 |—0.02983
my 2.0000 | -—0.00000 0.00000 0.00000 | —0.00000 0.00000 1.0000

A3 0.06908 0.00795 0.01329 | —0.48273 |—0.24176 0.03454 0.27630
2.0000 1.0000 0.00000 0.00000 | —0.00000 0.00000 0.00000
A1z 0.36333 1.74695 |—0.69215 |—0.24964 |—0.38360 |~0.06833 0.31526
213 0.24999 0.49999 | —0.25000 0.00000 |—0.00000 0.00000 0.00000
ms 1.9309 | —0.00795 |-—-0.01329 |-0.48273 0.24176 |—0.03454 |—0.27630
t3 1.3738 0.01925 0.03218 0.04180 |-—0.58528 0.08361 0.66889
m 2.0000 0.00000 |—0.00000 |--0.00000 1.0000 |} —0.00000 |—0.00000
2y 0.62624 |—0.01925 |—0.03218 |--0.04180 0.58528 |—0.08361 |—0.66889
ts 1.5000 |[—0.99999 0.50000 | —0.00000 0.00000 |—0.00000 |~—0.00000

Basic variables
3

[E] is the matrix of the coefficients of (25) and the corresponding variables
are in the set of the nonbasic ones of the tableau of Table 2. The co-
efficients corresponding to slack variables are taken as zero, i.e.,

2.4985 00 0.0.-----
[E]:|:3.2334 0.0 0.0------ s
3.5000 0.0 0.0------
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Table 5
Step Py () () @83}
2.0000 1.4131 0.0000
1.3640 2.0000 —0.8675
2.0000 10000
2.0000 0.0000
1 0.63597 1.4101 —0.6612
1.8619 _0.74287
2.0000 00000
2.0000 1.0000
2.0000 1.3738 0.0000
1.4246 1.5000 —0.8197
1.9309 0.0063
2.0000 0.0000
2 0.575441 1.4923 —0.6179
1.5895 —0.4025
2.0000 0.0000
2.0000 0.2500
2.0000 1.3687 0.0000
1.4324 1.7500 —0.8130
1.9296 0.0001
2.0000 0.0000
3 0.567589 1.5106 —0.6033
1.8042 0.2093
2.0000 0.0000
1.7500 0.1250
2.0000 1.3649 0.0000
1.4382 1.5833 —0.8080
1.9311 0.0001
2.0000 0.0000
4 0.561795 1.5266 —0.5895
1.6948 —0.1770
2.0000 0.0000
1.8333 0.0346
2.0000 1.3636 0.0000
1.4403 1.6527 —0.8061
1.9316 0.0001
2.0000 0.0000
5 0.559735 1.5323 —0.5845
1.7549 —0.0040
2.0000 0.0000
1.7639 0.0097
2.0000 1.3633 0.0000
1.4406 1.6119 —0.8059
1.9317 0.0001
2.0000 0.0000
6 0.559368 1.5333 —0.5836
1.7247 —0.1004
2.0000 0.0000
1.7925 0.0025

Underlines show the elements which do not satisfy the condition ¢*<0.005.
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[F] is the matrix of the coefficients of (25) and the corresponding variables
are in the set of the basic ones of the tableau of Table 2, i.e.,

1.0000 0.0 0.0  0.4131 0.0
[F]=| 00 08619 00 00  1.0000 |,
00 0.0  1.0000 0.0  1.0000

[H] is the matrix consisting of the rows of Table 2 and the basic variables
belonging to those rows correspond to the variables of (25), i.e.,

2.0000 —0.0000 0.0000 1.0000------
1.8619 —0.4000 0.4619 0.6000------
[H]=| 2.0000 1.0000 0.0000 0.0000.-----
1.4131 0.0866 0.0667 0.0866------
2.0000 0.0000 1.0000 0.0000------

By adding such the part the number of rows in the tableau increases. The more
the iteration of the calculation proceeds, the larger the number of rows becomes.
By introducing the new constraints (25) the number of slack variables becomes
large but one of actual variables remains constant. Since the values of slack
variables are not needed in the final results, the size of the tableau is able to
remain constant by substituting the additional part [4] into such the rows that
the basic variables belonging to those rows are slack ones as shown by the un-
derlines in Table 3. Then the optimal solution at the second step can be cal-
culated from the tableau of Table 3 by use of the dual simplex method. The
optimal solution and the corresponding {d;}* are shown in Table 4 and the second
row of Table 5. The condition §*<0.005 is not fulfilled now. Hence the new
constraints must be added concerning the elements of the third and the eight
rows in {65}, and the optimal solution {m;}}, {#}* at the third step is calculated
in the similar manner. Proceeding such the iteration, it is found that the con-
dition 6*<0.005 is fulfilled at the sixth step. The information on the convergency
of solution is furnished in Table 5.

6. SOME RESULTS FROM THE NUMERICAL EXAMPLES

6.1 Square grillage girders

In order to compare the numerical solution obtained by the described method
with the known analytical one the problem of square grillage girder with mem-
bers of the same cross section has been treated under a uniform load as shown
in Fig. 5. For the same problem P. G. Hodge!® gives the analytical solution by
making use of an inscribed octagonal yield curve for the circular yield curve.
The numerical solution evaluated by the linear programming problems for the
same approximate yield curve has been proved to agree with precisely P. G.
Hodge’s one. While for the circular yield curve J. Heymann'® gives the limit
load 4aP{M,=2.32 in the case f=1 and for the same case the method in this paper
gives 4aP/M,=2.3238 under the condition §*<0.005. The results for the various
values of g are indicated graphically in Fig. 6.

6.2 Other grillage girders
The numerical results of the other grillage girders with simply supported
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ends, subjected to the various loads as shown in Fig. 7, are presented. The
numerical results for the grillage girder with three main girders and three cross

é&é&«%&
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R | |
2.4
Analytical solution at #=1.0 (J. Heymann)
N [}
x
23 N )
urherical solution for
circular yield curve )/Q
N /
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(o3 ovtagonal yield curve
2.1
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8 (P.G.Hodge)
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Fig. 6 Comparison of the numerical solu-

tion obtained by the method in this
paper and P. G. Hodge’s analytical
one for the uniformly loaded square
grillage girder of the uniform cross
section as shown in Fig. 5.
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ones of the uniform cross section are shown in Fig. 8. From Fig. 9 to Fig. 12,
the relations between the values of the limit load and the spacing of main girders
are shown for the grillage girders with three cross girders and three or more
main ones having such the typical cross sections that the ratios of the fully
plastic torque to the fully plastic moment are 0, 0.05 and 1.15, where 0.05 shows
the mean value of H-sections and 1.15 represents the value for an idealized box
section with thin web plates and thick flange ones. And in Fig. 13 how the sec-
tional size of the cross girder influences the values of limit load under various
loadings is investigated. In these examples each main girder and each cross one
are assumed to be of the same cross sections respectively and arranged with the
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Fig. 16 Distribution of radial bending partially loading (Number of mesh:
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equal spacing respectively. The following nomenclatures are used in Fig. 8 to
Fig. 13: Mu, Tu are the fully plastic moment and the fully plastic torque of main
girder and M, Ty those of cross girder, a, b are the spacing of cross girder and
main one respectively, pi=To/Mn, Ba=Tw/Mwu, r=Mys/Mu, and P, shows the
value of the limit load for the case when Tu=Mu=-co, namely, each main girder
is collapsed by the same mode as a simple beam with span length 4a.

In general the torsional resistance of I-type or H-type girder is very small
and may be neglected in practical design. However, the above numerical ex-
amples imply that the neglect of the torsional resistance may give considerably
conservative results in the limit design of the structures with such girders. While,
Fig. 13 shows that to enlarge the sectional size of cross girder doesn’t always
result to increase the values of the limit load. Thus to find the optimal size of
cross girder requires a special technical aspect in practical design.
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6.3 Circular plates

H. G. Hopkins and W. Prager!® give analytical solutions for the axially sym-
metric problems of circular plate obeying Tresca’s yield criterion. The same
problems under Mises’ yield criterion have been studied where the spacing of
mesh in the finite difference approximation is taken as 1/10 of the radius. The
comparison of the numerical solutions and the analytical ones is given in Fig. 14
~Fig. 16.

6.4 Rectangular plates

The calculated values of the limit load for the partially loaded square plates
and the uniformly loaded rectangular plates are shown in Fig. 17 and Table 6.
In Table 7 the relations between the spacing of mesh in the finite difference ap-
proximation and the obtained limit loads for the uniformly loaded square plates
are investigated and at the same time the evaluated values of the limit loads are
compared with the lower and upper bound values given by P. G. Hodge and T.
Belytschko®. From a result of this it may be said that for the simply supported
edges even the rather coarse mesh gives a sufficiently reilable limit load but for
the clamped edges the close mesh is required to find the reliable limit load.

Table 6 Values of limit load for uniformly loaded rectangular
plates (PLy2/My)

La/Ly 1.1 1.25 1.5 2.0 3.0

Simply supported plates 22.910 20.527 17.859 15.008 12.640

Clamped plates 39.486 35.385 30.976 26.374 22.728

Number of mesh: 10x8, 6%¥<1/100 and L., Ly: lengths of the plate side
in X and Y-directions.

Table 7 Values of limit load for uniformly loaded square
plate (PL*/My)

Number of mesh Simply supported plate Clamped plate
4% 4 24.954 41.477
6x 6 25.018 42.891
8x 8 25.090 43.164
10x 10 25.094 43.328
12x12 25.091 43.470

Lower bounded* 24.864 42.864

Upper bounded* 26.544 49.248

%<1/100, L: length of the plate side.
* ‘The values evaluated by P. G. Hodge and T. Belytschko®.

7. CONCLUSIONS

This paper dealts with the problems of the evaluation of the limit load for
grillage girders, circular plates and rectangular ones. The method of analysis is
based on the idea that the determination of limit load can be reduced to a non-
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linear programming problem, especially to a convex programming one which can
be solved by the cutting plane method developed by J. E. Kelley. The reliability
of this method is confirmed by comparing the evaluated values in the various
numerical examples with the known analytical solutions. Especially, for the grill-
age girder problems it is possible to obtain the precise limit load if the sufficient
number of the iteration is performed. For the plate problems, to find the precise
limit loads becomes more difficult by the finite difference approximation of the
equilibrium equations, but in a practical point of view the limit loads with enough
precision may be obtained by using moderate mesh in the finite difference cal-
culation.

Since the method of calculation described in this paper is based essentially
on the lower bound theorem of limit analysis, it may be applied to the problems
of anisotropic plates, arbitrarily shaped plates and more complicate structures.
Hence it may be expected that the numerical method described herein would be-
come an effective weapon for the evaluation of the limit load in the various struc-
tures. Lastly, it is reported that the running time (including the time of print
out) of the digital computer amounts to 10~60 seconds in a grillage girder prob-
lem, about 30 seconds in a circular plate and 2~8 minutes in a rectangular plate.
The computer FACOM-270-30 of Osaka City University has been used for the
computation.

NOTATIONS

Y| panel length of a grillage girder

L reference length of a grillage girder or a rectangular plate

2 Lid

R radius of a circular plate

XY : rectangular coordinates for plates

Lz, Ly : lengths of the sides of a rectangular plate

a,b : spacing of the cross girder and the main one of a grillage
girder, respectively

4 spacing of mesh in the finite difference approximation for a
circular plate problem
4IR

Az, dy : spacing of mesh in the finite difference approximation for a
rectangular plate problem

a : A:c/Ay

P : concentrated load in a grillage girder or intensity of a dis-
tributed load in a circular plate or a rectangular one

Py, po : reference loads

M : bending moment of a grillage girder or bending moment of
a circular plate in the radial direction

T : twisting moment of a grillage girder

N : bending moment of a circular plate in the circumferential
direction

M., My, Moy : bending and twisting moments of a rectangular plate

M, : fully plastic moment of a girder or fully plastic bending

moment per unit length of a plate
Ty : fully plastic torque of a girder or fully plastic twisting mo-



114 Sonoda, Kurata

ment per unit length of a plate

M, : fully plastic moment of a reference girder

m', t,n : non-dimensional moments: m’'=M/M, and ¢'=T/T, for grill-
age girders, m’'=M/M, and n’=N/M, for circular plates, and
m! =My/M,, n'=M,[M, and ¥’ =M,/ T, for rectangular plates

m, t,n : non-negative variables for the problems of mathematical pro-
gramming: m=m’'+1 and ¢{=¢+1 for grillage girder prob-
lems, m=m'+2/~3 and n=n'+2/~3 for circular plate
problems, and m=m’'+2/~ 3, n=n'+2/~3 and t=t'+1 for
rectangular plate problems

B To/M,

¢ : Mo/ Mo

{m;}, {t;}, {n;} column matrices consisting of the variables m, ¢ and »

{ms}t, {t;}, {ni}* : optimal solution of the linear programming problem at the
ith iteration

{I} column matrix whose elements are unity

{0} zero vector

{8i)¢ a column matrix necessary to estimate the error in the cal-
culated limit load at the ith iteration

o* the maximum element of {3;}*

A, Az,ye e : slack variables for a linear programming problem

[, 2, : artificial variables for a linear programming problem

2)
3)
4
5)
6)
7
8)
9)

10)
11)

12)
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