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MATHEI\(IATICAL THEORY AND EXPERIMENT
OF FLOOD WAVES

(Trans. of JSCE Sept. 1953)

By Dr. Eng., Taizv HAYASHI, C. E. Member*

Synopsis This paper describes mathematical theory and laboratory experiment of the flood
wave in uniform open channel. The theory is developed by the method of successive approxima—
tions with respect to a small parameter ¢ which is defined by o= l/——l'jv(OWSm whree # (0>
denotes the vertical accelerative rate of rising of the stgge of the flood wave at the moment of
passage of its crest at a cross section of the channel, g the intensity of gravity and S, slope of
the channel. The laboratory experiment was conducted primarily for the verification of the theo-
ry. Flood wave with any desired value of ¢ was generated in flowing water with any desired
value of Froude number and specifically the rate of attenuation and the speed of propagation,
both of which were related to the crest of the wave, were measured and are compared with:

those given by the theory.

I. INTRODUCTION

Since the pioneering work by Kleitz { 1 J** appeared in 1877 many mathematical
treatments of the flood wave have been presented. It having been impossible to-
solve rigorously the basic equations of the flood wave, different assumptions were
based on for developing the solution of the problem and, thus, different aspects of
the problem were dealt with under different assumptions. The theoretical treatments.
of the flood wave, however, would roughly be classified as follows: (i) Analytical
treatment under the neglection of the equation of motion [1-3], (ii) analytical treat-
ment under the assumption of sufficiently small amplitude of the wave [4-15), (iii)
analytical treatment under the main assumption that the total or at least local
acceleration term in the equation of motion of the wave is negligible (16-22 and 23},
(iv) analytical treatment of the flood wave in totally horizontal channel 24y, (v)
- analytical treatment under the main assumption that the speed of propagation of
the wave differs little from the theoretical velocity of waves without friction (25-26),.
(vi) treatment by method of graphical integration of the basic equation 27, (vii)
partly graphical treatment by means of Massau’s equations of characteristics.
(28-33), and (viii) others {34).

The graphical treatments will be more useful than the analytical ones for prac-
tical purposes such as flood routing. Instead, in order to derive laws for the flood
wave characteristics the analytical methods will be more effective than the graphi-
cal treatments. In fact, two important characteristics, i. e, the subsidence, and the

speed of propagation, of the wave crest, have been studied by the analytical treat-

* Assistant Professor, Dept. of Civil Eng., Faculty of Eng., Chtio University
Research Scholar, Institute of Science and Technology, University of Tokyo

¥t Figures in square brackets indicate the literature references at the end of this paper.



————
14 ERF & HAERIBT (.29

ments. However, any of the analytical treatments is not systematic enough to permit
to estimate the error in the formulas whereby derived, so the accuracy of the ap-
proximation of the treatments is quite questionable., Abandoning any of the above
cited assumptions for this reason, the author systematically develops the solution of
the problem based upon a more appropriate assumption than any other. Further-
more, there having been few reliable results of experiments on both the subsidence
and the speed of propagation, of the flood wave, the experiment conducted by the
author primarily for the verification of his theory is presented.

II. MATHEMATICAL THEORY

1. THE BASIC EQUATIONS °

Consider a uniform open channel of a rectangular cross section with a constant
width B and take the z-axis along the bottom of the channel and the H-axis verti-
cally upwards. H represents the water depth in the channel and §, the channel
slope. Let U and @ denote the average velocity of the particles in, and the discharge
per unit width through, a cross section at =z, respectively. Then the equation of
continuity is

%T - _%% ................................................. (1)
where ¢ is time. As the resistance law it is desired to adopt the Manning’s law
U= (1/r) R*38,'2
where R is hydraulic mean depth, 8, frictional slope, and y equal to Kutter’s rough-
ness n in metric system and to »/1.49 in foot system. Using the law, the equation

of motion is written

oU , yoU__ °H U
at+U§;~_g ij.gSD_ e (2)

where ¢ is the intensity of gravity. Substitution of the relation U=Q/H in the
above equation yields

e )EH Q@ 2@ 1 °Q e’
1 -3} =492 & ¥, - ~¥ _ e
< g/ 0z  gH® Oz - gH ot So H* R (3)
Both the equations (1) and (3) constitute the basic equations.
2. NON-DIMENTIONALIZATION ' Fig. 1. Timewater depth

diagram of the flood wave at
the origin of channel.
the time-water depth diagram of a flood wave at a 4

Let us assume that the hydrograph and hence

cross section, say at the origin of a channel, is
given. Let us take the origin of time at the time
of occurence of the peak of the flood wave and let
the diagram be expressed by the formula H=F (t)
(cf. Fig. 1). The main purpose of the present theory

is to furnish formulas relating how fast the wave

bropagates downstream and how much the wave
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getsr'deformed as it propagates downstream.
In order to non-dimensionalize the basic equations let us make the following
linear transformations: v
(h=H|H,
q=QN/ gH/}
D =B H, e et e et n e aas (4>

r=t/V H,)- F(0)
\ S

&=az/V gH-F©0)
Wherein H, is the depth at {=0 at the origin of the channel (cf. Fig. 1), £ (0) the
value of 2°Fj/ot* at ¢t=0, and A, ¢, b, 7, and & are the non-dimensionalized forms
of water depth, discharge per unit width, the width of the channel, time, and the

distance from the origin of the channel, respectively. Substitution of (4) in the basic
equations (1) and (3) gives

oh  Oq
OB L0 ) e 5
or 4_85 (%)
and
*yDoh ., 9 O 1 o r’g q2< 2h>%
l_g_ -t 20t L 4L 317 L I 6
T A e TP e T e Y s, o\ (6)
where .
o.:}/jj*(o)/g/so ................................................ %8

Let @,, B, and F denote the discharge per unit width, the hydraulic mean
depth and the Froude number, respectively, for uniform flow at the depth H,. Then

F: Qaz/(gHoa)
and by Manning’s law
Qo:Ho (R02/3801/2/T)

where
R0:H0 B/(B+2H0)
Combination of the last three equations gives

F?= HB{1+ (2/0) 343 8,/ (32g)  wwvvreereereesmsessrssmincncnnes (8)
Substitution of (8) in the second term of the right member of (6) yields

B R () BT (= WeeE
0< if)aé‘ “¥of Thor T F\ b il 9

which, together with (5), constitutes the desired forms of the basic equations.

Next, let us consider about the boundary condition. The time-water depth re-

lation at the origin of the channel is to be used as a boundary condition, which is

(see Fig. 1). Substitution of the first and the fourth formulas of (4) into the above
relation gives

b= (UH) F(fH/-F© o)
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Putting

(1/HU)F(}/H07_NF(E))N o T) s f(T)  eeeereereerinne an
the last equation is written

Bo= f(T)  ceerreereennee e a2

which becomes the desired non-dimensionalized form of the boundary condition. In

view of Fig. 1 it is easily seen that
JF=1 and  F(0) =0 corerrreieeiiee e (13)

It is also seen from (11) that

)= -1 I 14

3. THE FIRST APPROXIMATION
Since the vertical accelerative rate of rising of the stage at the crest of the
flood wave is very small compared with the acceleration of gravity, o, in view of
(7), is easily understood to be a small quantity compared with unity in most
channels with slope. Hence neglection of all the terms having the multiplier o in
(9) will give the first approximation. Thus, from (9) there is obtained

_¥ ;,2,>2’3 o %)‘2’3: ......................................... '
P10 ) h (14 1s)

where A, and ¢, are the values of the first approximation of water depth and dis-
charge per unit width, respectively. Then substitution of (15) in (5) yields

oh 2 \23 23 2. \"%B/ 5 2h, \ Oh
2 F(1 - A, 1+ = T S R R § T RN 16
Seer(17) (1+5) (5% )t ae

which is the equation for 4, . By a theory of partial differential equations (35) the
solution of the above partial differential equation is given by the solution of the
following ordinary simultaneous equations:
dr_ ds dh
1 - 2 2/3 2/3 2]1] -5/3 5 2}‘1 - 0
Fl1+—=} A (1+=2 —4 =L
(1) m (=5 (3 %)

The last member of (17) is integrated to
T o B P (18)

where C is an integration constant. Integration of the equation of the first and the

second member of (17), after the substitution of (18) in the second member, yields

h

( %>2/3 2/3( 20)-5/3( +260

where C, is another integration constant. By the theory of partial differential equa-

+C for A=0 -oreeeeenn a9

tions the general solution, therefore, is given by

) 5
b= G[ T 28 23 “5/3 ]
P12 (e Y ()

3 b

where (@ is an arbitrary function. While the boundary condition, as described in the:

previous section, is given by
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;ll:_f'(f) D S | F O PP (20)
Hence, the function G being determined,

711=f[7— 2\2B 23 52;1 53/ 5 ok ]
F<1+-bf) oy <1+7’) <~+~‘>

3 b

which is the desired first approximate solution in non-dimensionalized form for

water depth of the flood wave. From (21) it is understood that the value of the

first approximation for the speed of propagation of particles on the flood wave is

2 2/3 2/3 2% ~5/3 2h
- + Z M A S 42
® F(l b > h ( b ) (3 b ) (22)

and the value of the first approximation for the propagation speed of the crest of

(12N B 2N s
wrF(l : b) <3 ; b) (23)

given by

the wave by

since A, =1 at the crest of the wave at the Fig. 2. Change of the shape of
the flood wave by the first ap-
proximation.

channel. It is also seen from (18) and (19) that
each value of water depth propagates with a
constant speed of propagation and the value of
water depth remains constant as it propagates
downstream. Thus, by the first approximation,
the crest of the flood wave propagates down-
stream with the speed given by (23) and with-

out any change of its height. The change of
the shape of the wave by the first approximation would somewhat be like shown
in Fig. 2.

4. THE SECOND APPROXIMATION

The accuracy of the first approximation having been insufficient for obtaining
the law of attenuation of the flood wave, the second approximation is needed. In
order to analyse the motion of the crest of the flood wave let us now restrict our
attention only near the crest and follow the movemént of it. From (21) and (23) it
is understood that the path of the movement of the crest of the wave by the first
approximation is given by {=w,r on the r—£¢ plane. Let 4¢ and 4dv denote
the deviations from the path towards the direction of & and 7, respectively. Then,
on the path line 4, is expanded as

ho=1 +-2-‘\A §+AEEE> T TT T UPPPROOPN 24)
where the first derivatives vanish due to (13). Substituting (24) and (23) in the
right member of (21) and considering that both 4 and 4r are small quantities
compared with unity near the path line,

b= fCr— (Glo){1+0(ds", 47 48, 489
=flr—(Elo){1+0d)}Y] e (25)

where O denotes the order of the magnitude of its arguments. Near the path line
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the above eXpression is further expanded as
A= (O + (/2D f " (O (0 — (/@) O (AT Y+ cvvvveevee
=f(0) + (/2" f" (O 02’+0 (B o ™) cvmemmeemneiaseeei e (26)
where B e (Bf@,) sveeeersvneranmmiie e @2n
Substituting (13), (14) and (27) in (26),

L &NV £
hio=1 2!(7 ﬂ’o> ‘0[<T_wo}] .................................... (28)

For obtaining the second approximation near the crest of the flood wave let us
now substitute the values of the first approximation in the left member of (9)
whose terms all are of the magnitude of the order of o. Thus (9) becomes

e I LGy IR VPR A L ) eSS

where

_ABGED 25 b NN
" F 55+6 11 ( Fb¢2>] (30

From (29)
q=F{1+ (2/6) 3P KPR+ 2A/6) 1711~ (0/2) K+{x~ (§/0) } + Olo- (v §/w,)°}]
Neglection of Olo+{r— (§/w,)}*] in the above equation compared with unity yields
=FCL+ @/0) I3 AL+ (2hf5) I L1 — (0/2) K+ {z = (§/@) ) rrevvmeeeooeee @D
where £, and ¢, represent the values of the second approximation for water depth
and discharge per unit ‘width, respectively.
Meanwhile, the equation of continuity, which the variables of the second approxi-

mation must satisfy, is

ok, aqz '
22 () eereeeenere e et e e inaensae s 32
o ot 32)
Substitution of (31) in (32) and neglection of O(o+(r—§/w,)) compared with unity
yield
oh, 2 \¥3, 23 2k, 53/ 5 oh, ) 2)"‘
: +Y h, + S +—— =1+ ==+
e B Y (1 ) (G ) B % b
5138 7 -2/3
. Kh, (14_%—) .............................................................................. (33)

By the theory of partial differential equations referred to in the previous section.
the solution of the above partial differential equation is given by that of the follow-

ing ordinary simultaneous equations:
d: d¢

T: ‘2; 23 23 th )—5/3 _5_ 2_@),
F<1+b> h, <1+b <3+b
dh,
= N e et 34)
o 2 5/3 5 2 -1 5/3 2]1 2{3 ( ,
R N . (1 +-52
2( b) (3 b) & ( b

The equation of the second and the third members is reduced after cancella-

tion to

6 /A3 b

The above equation is easily integrated to

V5 2\, 534 R
2F<1‘ X * )Kdé* 3
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3o 2 5 =+ 3 ]l et ddaareaees Neeeenaeone
exp[ 10F 1 +~b—‘>(-3" "B > Ké] {1_1_ (2}12/1))}2/5 (35)

where O, is an integration constant. The water depth of the crest of the flood wave

at the origin of the channel (£=0) being 1, the value of the integration constant

is determined by the condition

» h=1 at G0 e e (36)
Thus C, isfdetermined as
Co={1+ (/B Y5 v (37

Substituting (37) in (35),

(1 2Y (24 2 g fAE@mA,
e -e(1-3 )(3+7) KE|- ) 38)

which is the desired formula for the attenuation of the crest of the flood wave
with respect to the distance.
Next, from the equation of the first and the second members of (34) it is obvi-

ously given that

2\ =3 2h, >'5/3 5 2b2> :
L = 1+ = R 1 =2 B T T 39
@2 F( b ) h < b ( 3 b @9

where ©, is the value of the second approximation. Meanwhile, denoting U., Q.
and R, the velocitiy, the discharge per unit width and the hydraulic mean depth,
respectively, all for the uniform flow at the depth H,

2/3 2/3 12
=UuH:<71—Bu s, > H~~ (1 L 2HN R
n B)
" Therefore

d@Q,. 1 2828 2IL>‘5/3 5 2k 1z .

b ,:,.,I{O 1 +== 4T A L L LTI T R PP 4
dH g R < b <3 5 )S (40)

The combination of (39), (40) and (8) yields

= (1)1 gH,) (AQu/AH) «+-reeveemaviiiiinieii i, (41)

Denoting the non-dimensionalized form of @. by g¢., the above formula is

reduced to

o, = QI e, (42)

which coincides with the well-known Kleitz-Seddon law.

5. FORMULAS OF THE SECOND APPROXIMATION FOR WIDE RECT —
ANGULAR CHANNELS

In channels of wide rectangular cross section where O (4,/b) is negligible com-

pared with unity (38) is reduced to

27/1 4 -~
L, X — I Al B T 4
h. e pI 250<F 9 ) ¢_l 3

Let i denote the factor of the rate of attenuation of the water depth of the crest
of the flood wave, then from (43)

y 27 AN N
A 250(1«‘2 W, “d
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whose magnitude is plotted in Fig. 3. Fig. 3. The factor of attenuation of the
flood wave in wide rectangular channel

By being reverted to original di-
Y g verte © g plotted as the function of ¢ for valus

mensions (43) and (42) become of Froude number.
2771 F0) - o
H=H, - 45 5 .
P [250<F2 ) gHSx] “5) £ & @
and 1.2 / /Q:
_d_Qi ,,SA - /
W= iH "3 U, -eeer (46) o / A
respectively, where W is the speed of 09
propagation of the crest of the wave , 08 [ 7
in its original dimension. w 0.7 ! / ’ ';;
w 06 I 4 Ny
6. FORMULAS OF THE SECOND 2 0.5 Z
APPROXIMATION FOR SHORT ~ o« 17 A — i os
REACHES 03 / — // o
el .
0.2
For comparatively short reaches o ////////“/ o1
' 1T 44
it may be reasonable to put e
[2+(2/b)]/[1+(2]1/b)].:'1 01 02 03 04 05 06 07 08 09 .0
Then (38) is reduced to VALUE OF o~
- 27 /b+2 Y [1 4/ b
hz—exp[—loo-<5b+6> \F 9<b+2> 5:}] ........................ “n

Whence the factor of the rate of attenuation of the water depth of the crest of the
flood wave is given as

27 (b2 1 __/JL>"’1 .................................
1=10 <Sb+6> IF> 9\p+2/] it
By being reverted to original dimensions, (47) becomes ,
- H 27/ B+2H, (1 4 [ ACO NN B
H-H, exp[10(53+ 6H0> {F <B+2H> | gH, S, ] (48)
(48) is further expanded as
27/ B+2H, \*(1 4 IF(O) )
4H- <SB+6H ) |F~ 9<B+ZH)19HS"” """ (49

where 4H represents the subsidence of the wave crest in the distance 4z.
The speed of propagation given by (39) becomes in the original dimensions

_dQ.  5B+6H
TdH 3(B+2H)

while introduction of the relation
F0) t==F=3H/ot
into (29) gives for flood discharge per unit width

0-a.[1- gl (275 25)) |7 o -

" which corresponds to the Jones formula (e. g. (36)).

T e (50)

If the hydrograph in the vicinity of its maximum stage is considered to be the
segment of a parabola subtended by a chord joining two equal values of stages less
than the maximum stage, it is possible to evaluate 'F(O) in terms of the length of
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the'c_h’ord M, anél the rise Mz measured from- the midpoint of the chord to the
crest stage as '
FO) = —8 My M> - ovvrvmeeemreeenieieice e (52)
Substitution of (52) in (49) gives
4 H:__2_1§<,B,t2!io,>2fi_i< BV
10\5B+6H,/ \F* 9\B+2H,) | ¢H,S, M.’

The subsidence of the flood wave in the natural river with complex natural flowing.

conditions will be determined by dividing the river into successive short reaches

and then applying the above formula to each reach.

7. COMPARISON BETWEEN THE THEORY AND DATA OF FIELD
EXPERIMENT

Fig. 4. Field experiment of a flood wave in the River Edo
(Kantd Regional Bureau, Ministry of Construction Japan).

Fig.4 shows data of
field experiment of a

small flood in the River ! ER
S
Edo, Japan in December E‘é s
1943 conducted by the g 2% SETT: BT
) o 180 ‘5-@—;—5—;*——
Kanto Regional Bureau = 60 = 2N 5
. . s 2E B
of the Ministry of Con- ¥ 14 >‘,\“ ~N§
. ES P
struction of Japan [37]. 5 I-?!; / P Q\ S\\\ l
The river practically = 0 [// T =] = L
) S 080 =
. . o 0 f
has uniform width of o 0.60 I i
about 80m in average. o 2 4 6 8 10 12 14 16 8 20 2 2
The necessary data for Time in hour
the calculation of the subsidence of the flood wave are:
HH,=1.54m, n=0.026, S,=1/3, 600
and  F(0) = —0.05m/(30min)’ = — 1.542 x 10~8m/sec”.
Plotting the distance and Fig. 5. Maximum water depth-distance diagram for
the maximum depth of the flood of the previous figure.
water during the flood g M I '
. . K Le o Field experiment
on semi-logarithm scale :‘:’ 150 __The present theory |
gives Fig. 5, which illu- g § T s e I
1415 5 p— 2
strates the theory pre- kS S 3 O T S
= 13 X B} g ~C-8
sented by (45) is in a & % $ §,
g 12 S- g $
very good agreement N % =
with the experiment. § Ho 2 :p 3 g 0 12 14 6 I8 20 22 4
Letting L and ZTex, Distance in km

represent the distance between Hoshubana and Nagareyama and the time required
for the wave to pass through the reach between the two stations, respectively, the
experimental value of the speed of propagation of the wave is given as
Wesp = L/ Toxp =22,943m/5.06hr = 1.26m/sec
While, the theoretical value of the speed of propagation by (50) is
W =1.29m/sec
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which is also in good agreement with the experimental value.

III. LABORATORY EXPERIMENT

1. STUDY OF BASIC REQUIREMENTS

In view of the process of the derivation of the theory, it is easily seen that the
value of ¢ of the flood wave is less than unity, so that the terms on the left mem-
ber of (9) may be regarded as trivial terms. On the contrary the value of o of
the long wave would be infinitely large, so conversely the right member of (9) may
be negligible compared with the other member. Strictly, a wave in an open channel
is considered to have both long wave characteristics and flood wave characteristics.
But if o> 1, the wave should rather be regarded as a long wave than a flood wave
and if o< 1, it should rather be considered as a flood wave than a long wave. Thus
the value of o of a wave may be a measure to discriminate the type of the wave.
In the experiment of the flood wave, therefore, the wave of value of & less than
unity should be generated. In view of that, previous experiment of the wave con-
ducted at laboratory (38] is considered partly unsatisfactory. The present exeriment
being to be concerned with the verification of the theory developed in the previous
part through the confirmation of eqs (47. a) and (50), any desired value of Froude
number and o should readily be realized. In addition, ¢ being primarily related to
the value of the accelerative rate of the stage of the crest of the flood wave, the
wave at the origin of channel is desired to be approximately of sinusoidal shape
with regard to time so that determination of the accelerative rate of the stage may
most precisely be done.

2. DESCRIPTION OF APPARATUS AND ARRANGEMENTS

The essentials of apparatus and arrangements of the experiment are shown in

Fig. 6 and Fig. 7. Essentially the apparatus consists of the following components:

Fig. 6. General view of flood wave channellooking downstream and water supply system.

(i) Flood Wave. Channel of Non-return Type A wooden flume at Kawada La-

boratory of the Institute of Science and Technology of University of Tokys was
"used for the experiment. It has rectangular cross section, with the smaller dimension
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Fig. 7. Flooed wave generating system.
SUPPLY M

_~CHANNEL
wmzIz
e oy }— COUNTER WEIGHT
N \ be— CONSTANT LEVEL TANK
=
VALVE ’ L TURN BUCKLE
i/ s { =
VALVE T T SIMPLY DESIGNED
RETURN
SEAT A W L Saner, © 1 SCREW-JACK HARDLEN
. ?
- | ‘ I - -
o s -+ [——
(] , .
b }l ARM
- o | g 0y
IS S 2 7 TS T S 7 A R A A IS

WORM GEAR

vertical, with cross sectional dimensions of 30cm x 40cm. Total length of the
channel is approximately 33 m and, due to its large dimension, it was constructed
outdoors behind the laboratory. Variation of the longitudinal slope of it is provided
for by means of simply designed screw-jack supports. Any desired value of Froude
number is obtained by adjusting the slope to satisfy the formula
F=(1/n) B2 801/2/1/91{0
(ii) Water Supply System Directly above the upstream end of the flood wave

channel a constant level tank is constructed (seen nearly at the center of Fig. 6),
to which sufficient amount of water is constantly supplied by a supply flume from
a larger concrete-lined head tank. Excess water of the former tank is returned by
a return flume to a large concrete-lined reservoir from which water is constantly
pumped up to the larger head tank.

(iii) Flood Wave Generating System At the bottom of the constant level tank

a valve is inserted, which is operated as a kind of a specially designed needle valve.
It is displaced sinusoidally with respect to time by means of a revolution of an arm
fixed to the axis of an worm gear (see Fig. 7). The shape of the valve has been
designed so .as to provide the rate of discharge proportional to its displacement.
Hence, the rate of discharge for the flood wave of sinusoidal form may be provided
at the origin of the flood wave channel by a revolution of the arm of the worm
gear. Both the speed of revolution, and the length, of the arm, are arbitrarily adjus-
table. Therefore a flood wave of any desired value of o and wave height is

readily generated.

3. EXPERIMENTAL PROCEDURE

Along the flood wave channel at six stations of 550 m in each distance water
depths in the channel are led to each buoy chamber (Fig. 8). By means of a buoy,
a pair of frictionless pulleys and a string the amount of water depth at each sta-
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tion is directly transmitted to a recor- Fig. 8. Buoy and buoy chamber.
ding place (Fig.9), where the amounts ' iLiLLEY

of the water depths at the six stations

are simultaneously recorded by photo-

graphical means.

4. EXPERIMENTAL RESULTS = =  P——e—— %

. —— JO
The experimental results of the plndy BUOY

rate of attenuation of the crest of the é "
flood wave are plotted in Fig. 10 cover-
A BUOY

ing the entire range of experiments. /
. FLOOD CHAMBER
Theoretical curves expressed by (47.a) WAVE RUBBER
for b=4.5 cm/40 cm=01125 are also CHANNEL  PIPE
shown in the figure. Fig. 9. Diagram of the arrangement to transmitt the amount
In Table 1 the of water depths at six stations to a common reading place.
STRING PULLEY
experimental results 0 o AN
of the speed of propa- F t]
gation of the flood j | ~BUOY ) | |
' i A A 1 4l TLI 1
wave are tabulated. - /
FLOOD WAVE SCALED - Buoy
CHANNEL,  ~ PAPER CHAMBER

Fig. 10. The factor of attenuation of the flood wave.
IV. CONCLUSIONS

0.8 T i
® o7 b —— THEORY . o f By the method of succes-
3 o

- x . . . .

i EXRERIMENT R (/“' sive approximation with res-
S 06 o F=oq.4
= | e 0.5 pect to the small parameter o,
S o5 — X 0.6 o :

A 0.7 the solution of the second ap-
g s os e Joss
E oa b 4 09 // ‘ / proximation was obtained. The
3
s // 0 error of the solution in per-
£ 03 (3= . .
< o centage is considered to be the
5 Pa .,// 1 elods
L 02 e - order of the magnitude of 1005~
€ g //”‘///_/F;‘—") . .
g ol ///,.x/ Y el e 1T o defined by (7) is found to

/ .—“‘ "1 . . .
///"'::-"‘J be a measure to discriminate
0
O ol 02 03 04 G5 06 07 08 <4 L0 the type of a water wave in

value c¢i o open channels, i. e., if ™>1, the
water wave rather be regared as a long wave than a flood wave and if o<1, con-
versely, Main laws derived by the solution are as follows: (i) The subsidence of
the fllood wave is most generally given by (38), for the wide rectangular channel
by (45), and for the short reach by either (49) or (53), all of which are essentially
the improved formulas for the formula by Forchheimer or Bachet-Callet. (ii) The
speed of propagation of the wave is most generally given by (50), which ié the
same as Kleitz-Seddon law. (iii) The flood discharge at the vicinity of the crest

of the wave is given by (51), which is the improved formula for the Jones formula.
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Run F Speed of Propagation

No. Exp. |Theory Diff. theory. The results are summarized in Fig. 10 and
! (cm/s) | (em/s)| (%)

71 06 0.510% 67.8| 631} 7.5 . . ] .
8| 06| 0367, 6L1| 642] -4.8 ment is not all that might be desired, the experi-
9 | 07! 040! 76.3| 769, -0.8

10 07 0547¢ 79.7| 795! 0.3
12, 07| 0562 70.5] 688/ 25 the theory.
13 0 0.7 0525 70.5 ! 70.3 0.3
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