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DETERMINATION OF LOSS MINIMIZING OFFSETS
PATTERN THROUGH THE MAXIMUM PRINCIPLE

Twao Okutani*

1. INTRODUCTION

When the traffic volume increases exceeding some degree over the whole of
the network where all intersections have traffic signals, the independent operation
of each signal leads to inviting a fall of the capacity of the network. To avoid
such inefficiency there is a control procedure which aims to relate all signals in
their indication through some method so as to mitigate the traffic congestion.
The procedure is a traffic signal control system called area traffic control which
has become a staple problem of traffic control in some big cities in the world
these days, being supported by the rapid spread of computers. The area traffic
control has already been executed in the principal cities of the U.S.A., England,
Canada and other countries and it seems that those control systems have been
producing effective results.

But as to the development of a control procedure it still remains first step
although there have been much technical improvement for an electronic com-
puter; the present is so to speak an experimental stage or a trial and error stage.
For this reason an efficient software for the area traffic control procedure is be-
ing required to be developed.

When we limit the argument to the fixed-time signal system, there are only
several methods which have already been developed so far as the author knows,
for example, the Combination Method which was developed by Hillier? and Whit-
ing and extended by Allsop?, the TRANSYT Method® or the Method through
dynamic programming developed by the author®:®,

In the present paper a method for minimizing the loss to traffic in a network
controlled by fixed-time signals through the discrete maximum principle subject
to assumptions which are similar to those adopted in the Methods mentioned
above is described. :

When we say about an area traffic control procedure, we mean the method
for rational determination of cycle time, split and offset of each signal.

But the former two control parameters can be determined independently at
each intersection and so the determination of offset will be the main problem in
the substantial sence of the area traffic control whose purpose is to transact the
the traffic stream smoothly by some combination of control parameters at all the
intersections. Therefore in the present paper we focus the problem on determin-
ing the optimum offsets pattern for traffic signals in a network.

2. ASSUMPTIONS

Here we adopt the loss to traffic for estimating the effectiveness of a control
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procedure and discuss on the optimum area traffic control procedure (or offsets

pattern) which minimizes the total loss to traffic in a network. Here in the paper

the loss to traffic may be anything that can be quantified, for example, the number
of stops of vehicles, the running time, the delay or the queue length of vehicles.

The important thing is that the criterion is the appropriate measure for estimat-

ing the effectiveness of transacting traffic in a network and so if the pattern of

the traffic flow is eminently different with time even in the same network, it may
be preferable to adopt the most appropriate measure with time. Whence for
convenience we use the word “loss” for designating the measure of the estima-
tion of the control effectiveness.

The main assumptions in the paper are as follows;

1) The split is given at each intersection in the network. All signals have a
common cycle time which may be a standard cycle time at the most con-
gested intersections.

2) The loss generated in a link which has intersections at both ends of it de-
pends only on the flow on it and the offset policy at those intersections and
is not affected by any other offset policy; that is, the loss to the flow ga»
between the two intersections «, b is represented by the function ¢(ka, ks, gas)
where &, and %, are the offset policy at the intersections ¢ and b respectively.
The assumption 2) seems to be in conflict with the substance of the area

traffic control which aims to control the traffic taking into account the relations
among the intersections in the network but it is considered to be nct so unreal
when the traffic volume increases so that the area traffic control is required though
not true in the case that the traffic flow is small; that is, the reasonableness of
this assumption may be allowed when the saturation flow incessantly flows during
every green time.

3. SIMPLIFICATION OF A NETWORK

By the assumption 2) it becomes possible to simplify or reduce a network®
in the following ways.
1) Suppose that there is one or more minor intersections on a link between two
major intersections as shown in Fig. 1(a) then by the assumption 2) the optimum
offset policy at the minor intersections can be determined depending on a pair
of offsets at the major intersections and it is independent of the policy at all the
other intersections. Hence it may be permitted to omit those minor intersections
from the network. Thus the network shown in Fig. 1(a) becomes as the network
in Fig. 1(b).
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2) In the case that several links are connected to a pair of intersections in
parallel as Fig. 2(a) those links can be delt with as single link as shown in Fig.
2(b) because the loss generated in a link is identified according to a pair of
policies at the intersections.

If we use the combination of the above two conversions, a graph in Fig. 3(a)

is in the first place changed to the graph in Fig. 3(b) by the conversion 2), then
to the graph in Fig. 3(c) by the conversion 1) and eventually to the graph in
Fig. 3(d) which is merely a link with intersections at both ends of it by using
the conversion 2) again.
3) When a node » is an articulation point as in Fig. 4 (a) and the graph can be
partitioned into two subgraphs by detaching the graph at the node (Fig. 4 (b)),
there arise no troubles if the determination of the control policy is separately
done each subgraph so long as the policy at the node # is considered in common.
Therefore in such a case the optimum control policy for a main subgraph is de-
termined at first and after that the control policies for the other subgraphs are
determined depending on the policy of the main subgraph in relation to articula-
tion points. Whence the graph in Fig. 4(a) can be reduced to such a graph as
in Fig. 4(c).
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By utilizing the conversions 1), 2) and 3) the graph in Fig. 5(a) eventually
becomes as the graph in Fig. 5(e). When we examine the final graph in Fig. 5
(e) we notice the fact that the degree of every node is no less than three. Gener-
ally, the degree of every node in a simplified graph is always no less than three
and so it may as well to deal with only such a graph in an analysis.

However, since we can expect no improvement in the process of seeking an
optimum control policy even if the shape of a graph for analysis is simplified as
can be seen from the process of simplification of a graph mentioned above, a
grid system network is delt with here for the convenience of formulation.

4. DETERMINATION OF AN OPTIMUM OFFSETS PATTERN

Here we consider a grid system network which has (N+1) intersections in
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the horizontal direction and M intersections in the vertical direction as one for
analysis and divide it into (N+1) sections 0,1, 2, ---, N as shown in Fig. 6.
Let
kg7 ; the traffic flow which flows from the intersection in the (#—1)-th section
to the intersection in the n-th section on the i-th horizontal link.
g7 ; the opposite flow to g7 .
°q7 ; the flow which flows from the i-th intersection to the (i+1)-th intersection
on the i-th vertical link in the n-th section.
*q?, ; the opposite flow to °¢?, .
kr ; the offset policy at the i-th intersection in the #n-th section which is the
time length from a standard time to the beginning of the green time in
the vertical direction and that to the beginning of the red time in the
horizontal direction. Suppose that the common cycle time to all the inter-
sections is C and the optimum offsets pattern is seeked at discrete points
of = seconds interval, then A? is concretely defined as follows;
k2=0; the offset is equal to zero; in the vertical direction the offset of the
green time is zero and in the horizontal direction the offset of the
red time is zero.
kr=1; the offset is 7.

(2

k=K, the offset is K.z, where K=C/r (positive integer)

rgr (kY k2, tq%) 5 the loss suffered by *¢% on the i-th horizontal link in the #n-th
section when the policy at the i-th intersection in the (#—1)-th section is
ky~' and the policy at the i-th intersection in the s-th section is &7.

hgn (ke k2, q) 5 similarly the loss suffered by g7, .

vk, R, 'q7) s the loss suffered by “¢? on the i-th vertical link when the policy
at the i-th intersection in the #n-th section is £ and the policy at the ({-+1)-
th intersection in the same section is £2,,.

v ke, k.1, °q%) 5 similarly the loss suffered by vg?, .

n=0,1,2,..-,N; i=1,2,...,M)
Here
hg(z?l(k'—l kO hqgl)zhggz(k;l> kg: hqu)zo (i:]-’ 27 ttty M)

PRERAZT)
vgzl(an, kﬁ[.“’ vg?{ﬂ):vgan(kxp k}z;[.(.l’ ”q’;ﬁ,z)zo (%—'——0, 17 29 Y N)

The reason why ?¢%( ) and %% ( ) (v=1,2) are set to be zero is that the
loss generated on the exterior links of the network is not related to the control
effectiveness of the network and so they may be some constant values instead of
Zeros.

The purpose of this study of determining the optimum control policy at each
intersection that minimizes the total loss generated in the network comes to a
mathematical problem of seeking k* (#=0,1,2,.--,N; i=1,2,-.-, M) so as to
minimize the objective function represented by

N T M M
F= 3] [ > {hg?l(kg_l’ kL g gkt R, hq;‘z)} + Z {”g;‘l(k?, B a3)

n=0 =1 i=1

+ogn ke, B,y ta) H (1)
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There are many mathematical techniques which can be used to minimize F
represented by equation (1). Here we use the discrete maximum principle develop-
ed by L. T. Fan and C. S. Wang which originated from Pontryagin’s maximum
principle. This discrete maximum principle by Fan and Wang?” is the generalized
method of the discrete maximum principle which was published by S. Katz® in
1962.

Now let the sections of the network correspond to the stages in multi-stage
decision process. And the total loss generated in the network is minimized in
passing through the (N+1) stages which consist of state variable ¢g(k, k¥, ¢)’s and
decision variables £’s.

However, it is impossible to apply the discrete maximum principle to the
problem shown here as it is, and so it is required to change the problem to a
standard type of problem of the discreate maximum principle by adding or modyfy-
ing the state variables and the decision variables. For this the following variable
is introduced as a state variable in the z-th section.

M

M
ap=ap 3 PR ) O R P+ 3T {0 Rt
=1 )

i=1

O R D] (=12, ) (2)
Where
rj= Z} {vg“(ko k2+1’ qn)"" gzz(k?’ kfﬂ’ qg2)>} (3)

This state variable x? means the accumulative loss from the 0-th section to the
n-th section and so the total loss generated over the whole of the network can
be described by x.

Let

yi=ky (4)
Oy="k}—ky (—K=0;=K) (3)
then the state variable a? given by equation (2) is rewritten as follows

M

.I‘"".’L’n"l—f- E { gll(y -1 0n+yn -1 hqu)+hgl2(yn 1 0n+yn 1 hqzz)}

M= ¥

+ {gu(ﬁ"w" L O YD ") N0y 67 Y ”%Q} (6)

=1

i

In the above equation we regard y? as a state variable and 67 as a decision vari-
able. From equations (4) and (5) the performance equation associated with y?
becomes

yf=02’+?/§'_’ (n:17 2’ ct N; i=1’ 2: ""M> (7)

Here 3? is the policy %? (i=1,2, ---, M) at the i-th intersection in the 0-th section.
Thus the problem delt with here is converted to the problem where decision
variables §7’s in each section are determined so as to minimize x¥ subject to the
performance equations (6) and (7). This is a general problem which can be solved
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by the discrete maximum principle and the concrete method for solving the prob-
lem is as follows.

First of all we introduce the Hamiltonian function corresponding to the n-th
section represented by the following equation.

M
Hr=gz+ D4, (1=1,2, -+, N) (8)
=1

where z? is a covariant variable following the equations

oH"
z;z-—l:—a——@j— n=1,2,---,N) (9)
Al (=12, N; i=1,2, 00, M) a0

Here the partial differential equations (9) and (10) means the difference equations
in fact since the problem in the present paper is a discrete type.

Substituting the equations (6) and (7) in the Hamiltonian function represented
by equation (8) gives

M
Hr=z; [x;‘—1+ > {"g;a(yz‘"‘, A T VA i "q?z)}

M
+ 5 {”0?1(0?+2/’Z"’ O+ G+ GO+, 0%, YT, vqm}]

=1

M
+ i2=1 27, 0y an

The following relations among the covariant variables are obtained from equations
(9) and (10) if we consider equation (11).
oH”
R (12)

oH”» 2
art= g =t a (3] (el oy e e, o )

v=1

+ {”g?,(og-l—y;%l, e e O Sl A G o TH N O Ve O Y }

+ {”g?_l,vw?.ﬁy?:;, Oy, gy )=, (O Y, Y, g ) }])
13)

On the other hand the objective function F is described as follows as previously
mentioned.

F=1-2l'+0-y7+0-y)+ --- +0-9%
Hence the final condition of 2z} becomes
=1 (14)
2N,,=0 (¢=1,2,---, M) (15)
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jFrom equations (12) and (14) the covariant variable z7 is uniquely determined as
27 =1 n=1,2,-.--,N) (16)

Whence equation (13) becomes
A=+ 3 H"GZ@?‘IH, O3y L, hg) ~ gy, O, ”q%:)}
{”0“(0"+y" 41, 03,V a9 0+ YT, 07, Y, ”q;‘,)}

+{ 00 (O, Oy L, gr, ) —ogn, (07 i, 61y, g >}]

an
Therefore the Hamiltonian function eventually becomes
Hr=217'+ }é {"gza(yz‘“ E N I VR A T hq;z)}
+ 21{31 { (A CHE TN R B B S A G R TN N S Ve R ”q;;)}
PO (=12 W) (18)

The optimum decision variables 67’s in each section are obtained by finding
out the values which minimize H” represented by equation (18) in their domain.
Here the domain of 67 can be written as —y?'<#7<K—y?* since yr=07+y»"!
from equation (7) and 0=y*=K.

We solve the problem of minimizing H” through applying dynamic program-
ming. In the first place f,(¢7_) is defined to be the minimum value of

M
> {”gﬁ(yz‘*, O3+y37 ")y O3+ ) }
i=j—1

M
+ 5 1{%(0%:»/;‘, 07+ YD, "ah) +ron(O Y, 68,y ”q@}

t=j~1

o
+ 3 22,03y .
=j

Then the minimization of H™ gets equivalent to obtaining #'s (n=1,2, ---,N;
i=1,2, ---, M) which correspond to fi.
Now from the definition first we get

M
SulO3-1)= lgggiilK . 1[ > {”gﬁ(y? Oy M) e Oy "qzz)}
=V =0y =K—yy Li=N-1
M
+ 3 {”gﬁ(ﬂ?w?“, Ol tViE ") R0 Y 07 i %)}
M
S RCETR] 19)

All ¢%'s sufficing the above equation are calculated, corresponding to all 67_,’s
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in its domain —K=67_,<K. The obtained 67, is denoted by 62(6%_,) in detail.
Next f,_,(0%_,) is expressed by the following equation, using the recurrence
relation of dynamic programming.

fuOe= | min | P U O )
Yy 12Uy S8 —Yy

F 0 LY O st Yo "o, 2)} + {”g:%.(nz,l(ﬁ" e Yo O YT " g0

TG0, Vi O H Y s, z)} T2 (O YD) + S (6 _1)} (20)

From this equation 6%,_, corresponding to given ¢7%_, is obtained.
Likewise the general recurrence relation is represented by the following
equation.

fj(a?'1)= n—1 <I;1nigK n—l[ {hgg—lrl(y?::’ 07;—1“"?/?:%’ hq?—x,x)
—Yy; RV;EAY;

R Ry N i h%*—l,z)f * {vg?—x,l(ﬂ?_ﬁry?:i, T3+37 ")
+°97 1,505 1+ Y55 O3V 0 ) } +2?<0?_1+yj:1>+f‘j+1<0?>]

(7=2,3,---,M-1) (21)

By using this recurrence relation all the conditional optimum values 6%'s (j=2,
3, +++, M—1) are determined.

Eventually the following relation holds between the first intersection and the
second intersection.

fi= min (7(0) 22)

g7 gotten at this final stage is no more a conditional optimum value but an abso-

lute optimum value from the definition of f;. Let the value be designated as 67 then
62 which corresponds to fz(é;') of f,(6") previously obtained become the absolute
optimum decision variable 5;’ at the second intersection. The optimum decision
variable 5;’ at the third intersection is obtained by choosing é;} which corresponds
to 1‘3(5;1). Similarly, by examining back to the first intersection using f;, f;, -+, fi
calculated beforehand all the absolute optimum decision variables which minimize
the Hamiltonian function H™ are determined as 53’ G=12,---,M).

Now we have seen that the optimum offset policy at each intersection minimiz-
ing the total loss over the whole of the network can be determined through the
discrete maximum principle. But in the above we show only the main points of

the technique for determining the optimum offsets pattern and so the concrete
calculation procedure is shown below.
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[Calculation Step]

If we regard the problem delt with here as a mathematical problem through
the discrete maximum principle, it cannot be solved by using the usual method
since the boundary conditions of the state variables, that is, the initial condition
z0 43, y3, -+, ¥y and the final condition xV, y¥,yY, ---, ¥y are both free. There-
fore here we consider the initial points to be fixed and determine the optimum
solutions successively corresponding to any different sets of &%, 43, v3, -, ¥%.

Step 1. Assume a set ¥, 93, ---, ¥% and calculate x? -

by equation (3).
Step 2. Determine é{" , 0;" st g)ﬁ using equations from Assume  =f, yf

(19) to (22), assuming xV, y¥, v, -+, yL. ——
Step 3. Then a¥-1, y¥=1, y¥-1, ... y¥~1 are calculated Assume v, 41

from equations (6) and (7). Calculate z¥3! (i= Cel i

1,2, ---, M) by equation (13) using those state — { o

variables in the (IN—1)-th section and determine
the optimum decision variables 5{""1, 5;""‘, cee, o
49*1,1‘}‘1 by equations from (19) to (22).
Step 4. Itelate the same procedure as step 3 until
xh yh, vl -, vy and 5{, 5;, ey 5}” are obtained.
Step 5. Calculate x9, 99, 95, ---, ¥ from equations (6)

and (7) using x}, ¥}, 5§ obtained at Step 4.

Step 6. If the state variables in the 0-th section calcu-
lated at Step 5 are equal to the assumed values
at Step 1, go to Step 7. Otherwise return to
Step 2. | No |

Step 7. Memorize the obtained values xY and y? (n=
0,1,2,---,N; i=1,2,---,M) and return to
Step 2 assuming new initial condition %9, 2, o7 -corresponding to
<+, 95 and calculating x? by them. min =}

Caleulated x?,3°
=Assumed zf, 32

Is calculation done for

all sets x,yd 7

lYes

Output ;

Step 8. After calculating for all different initial sets
¥, ¥% -+, ¥ and x%, compare x¥ corresponding
to each initial set and find out the minimum
value and corresponding y* (#=0,1,2,-.-, N;
i=1,2,---,M). Then those state variables
give the optimum offsets pattern.

The above calculation process is summarized in the flow chart shown in Fig. 7.

Stop

End
Fig. 7 Flow-Chart.

5. DISCUSSION AND CONCLUSION

In the present paper a fundamental aspect is shown for determining the
optimum offsets pattern through the discrete maximum principle.

As it is reported that the effectiveness of reducing the total running time by
about twelve percent was obtained in the Glasgow’s experiment® of the area
traffic control over the existing network based on the similar assumptions, it may
be possible to reduce the traffic loss by using the present technique for an actual
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network if the traffic loss function *¢2(k2-1, k7, *q2) or °gr(kw, k.., °q%) is given
through simulation technique or through surveys.

There is a problem what quantity we should adopt as the values of *¢? and
’gr since they fluctuate at all times. Both the value and the degree of the fluctu-
ation of the traffic volume vary depending on the time length during which they
are counter. If a control procedure is changed successively after some time
interval, the length of it is considered to be a rational time length during which
the traffic volume should be counted. That is, since it is possible to change a
control procedure (including cycle time and split) at every time interval if we
use the technique for seeking the optimum offsets pattern proposed here at such
time interval during which the traffic volume and the flow pattern are considered
to be nearly constant, for example, if the time interval is thirty minutes we may
adopt the mean traffic volume per thirty minutes.

As the minimum interval in which it is possible to change the control
procedure we can consider the time length in which the estimation of the
traffic volume appearing in the subsequent interval and the calculation for de-
termining the optimum control procedure through the method mentioned here
using the estimated traffic volume as input are possible. However, if the time
interval is too short, there appear many inconveniences, for example, the fluctu-
ation of the traffic volume becomes violent or it gets difficult to estimate the
traffic volume. And so it is important to adopt an appropriate time interval
during which the traffic volume is comparatively stable. It may not require that
the control procedure adapts itself to every fluctuation of the traffic volume in a
short time.

In this paper the technique of determination of the control procedure for a
network controlled by fixed-time signals but the same argument may hold good
for a vehicle-actuated signals system when the traffic volume increases to some
extent because the maximum green time set beforehand is always displayed when
the traffic becomes congested and we cannot find any substantial differences be-
tween a fixed-time signal and a vehicle-actuated signal.

Here we assume the common cycle time at all the intersections but in fact
each intersection has its own optimum cycle time corresponding to the traffic
condition there. The proposed method seems no to be general in this point. But
if we set an independent cycle time at each intersection it is feared that the
effectiveness of offsets which are considered to take the most important role in
synchronization is destroyed periodically and as the result it becomes doubtful
whether the original purpose of executing the optimum control for two dimensional
signals system is achieved or not; that is, it is considered to get difficult to
guarantee a significant difference from a randomly selected control policy. Though
any particular difficulties do not arise in using the method for a network controlled
by signals having unequal cycle times if we do not hate the increment of the
calculation, for the above reasons we had better not give an independent cycle
time at each intersection but adopt a half or third (or two times or three times)
of some standard cycle time or divide the network into some subareas each of
which has a roughly homogeneous traffic condition and use a common cycle time
in each subarea which may be rather independently controlled.

The volume of the calculation is anticipated to amount huge especially for a
large network because the method requires much iterative calculation as we illus-
trate in the calculation step. It also depends on the interval 7 seeking the opti-
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mum offsets pattern. The interval should be one such as balanced with the
irregular fluctuation of the traffic volume and so forth and so it is meaningless
to take an unnecessarily fine interval. About ten seconds or twenty seconds may
be sufficient.

We do not refer to the way of assuming x¥ but there is a way as follows.
That is, the lower limit is the sum of the minimum loss generated in each link
when it is independently delt with and the upper limit may be the total loss of
the traffic in the network which is controlled by random offsets pattern since
x) means the minimum total loss generated in a network when a certain set of
offsets in the 0-th section is given and it is probably less than the loss corre-
sponding to random offsets pattern. However, speaking in conclusion, we do not
have to become nervous about the way of assuming x¥ but may only add the
difference between x? initially assumed and x) obtained as a result of the itera-
tive calculation to assumed x¥ since the important thing is whether the calculated
Y%, ¥3, «++, ¥9 correspond with those initially assumed or not.

The most important problem left for the future is to examine the adaptive-
ness of the loss function which is the fundamental premise of the method. We
are now doing work associated with the point through simulation technique and
we will be very happy if we can obtained the lower limit of the traffic volume
for which the assumed form of the loss function is adaptable.
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