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STUDY ON FREE VIBRATION OF CURVED GIRDER BRIDGES®

By Sadao Komatsu®* and Hiroshi Nakai***

SYNOPSIS

The studies on free vibration of a curved girder
bridge are much complicated because the bending
vibrations in orthogonal directions are generally
The object of this
paper is to present the fundamental equation for a

coupled with the torsional one.

freely vibrating curved girder bridge with an un-
symmetrical cross-section and to obtain an approxi-
mate solution of the frequency equation. From
‘these results, the practical formulae for determining
the natural frequencies are proposed. Furthermore,
the validity of this theory is verified by comparison
with the results obtained from the experimental

studies.
I. INTRODUCTION

Recently a great many curved girder bridges have
been constructed in Tokyo and Osaka, so it is very
important to confirm the security of such girder
bridges from a dynamical point of view.

A few dynamical analysis concerning these kind
of bridges have already been reported. For instance,
the vibration of a curved bar has been studied
by G. Schumpich” in disregard of the warping
A. Hirai and Y. Fukazawa® analized the
vibration of a curved bar by taking its warping

rigidity.
rigidity into consideration. H. Yonezawa® in his
dynamical studies treated the curved girder bridge
as a fan-shaped plate. The above studies mainly
dealt with simply supported curved girder bridges
and it seems that no analysis has been given for the
continuous curved girder bridges so far.

Now, if a curved girder bridge having an un-
symmetrical cross-section vibrates freely, both the
bending vibrations in two mutually perpendicular
directions and the tersional vibration occur simul-
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taneously, since the longitudinal axis has curvature
and the shear center of its cross-section does not
coincide with the center of gravity. Then, that
phenomenon is nothing but the coupled vibrations
of bending and torsion. For the straight beams
with nonsymmetrical cross-section the same kind of
phenomena had already been pointed out and analy-
zed by S.P. Timoshenko®, J.M. Gere and Y.K.
Lin®,

With regard to the usual curved girder bridge the
cross-sections of which are more or less different in
shape and size from those of ordinary straight gir-
der bridges, so the following properties should be
given attention :

1) As the stress resultants in the outside girder
are greater than those in the inside girder, the for-
mer should be designed to have larger size than the
latter.

2) For taking centrifugal force due to driving
vehicles suitable cant must be provided on the floor.

For these reasons, the cross sectional shapes of
almost all curved girder bridges will be made un-
symmetrically. Accordingly, whenever the vibration
occurs in a curved girder bridge, both bending and
torsional vibrations are usﬁally coupled. For the
curved bridge, the deflections of the longitudinal
axes and the twist about the shear center are not
able to be independent each other owing to the
curvature of bridge axis. Such coupled vibrations
will appear frequently even if the cross-section has
Because of this fact, the free
vibration of curved girder bridges may be essentialy
distinguished from that of straight girder bridges.

Now, the fundamental statical equations®™® for

a symmetrical axis.

stress resultants and displacements are fairly derived
by considering peculiar characteristic of the curved
girder bridges. On the basis of these equations we
have derived the fundamental equations of motion
for the free vibration of the curved girder bridges.
However, it is very difficult to find its exact solu-
tion, and that the rigorous solution may be too
complex to be applied practically to numerical cal-
culations. Then, a solution for frequency equation
is given here by means of Galerkin’s method, so

the solution together with its approximate formulae
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may be applied for determining the natural frequ-
encies of general curved girder bridges.

Finally, some experimental studies have been made
on a several curved girder bridges constructed near
Osaka.

incided well with the measured values.

The theoretical values were seen to be co-
Therefore,
the formulae given in this paper are recognized to
be useful for analyzing the dynamical characteristics
of the curved girder bridges.

II. THEORETICAL STUDY

1. System of Coordinates

In the cross-section of a general curved gider bri-
dge, let the shear center, the center of figure, the
center of gravity, and the loading point be denoted
by the symbols S, O,, G and P respectively, and
these points be laid on the circumferences of the
circles with radius Rs, Rp, Rg, and Rp respecti-
vely, away from the center of curvature O-O as
shown in Fig. 1.

]

Center of curvaturce

Fig. 1 Cross-section of curved girder bridge
and system of coordinates.

In general, for the unsymmetrical cross-sections,
the shear center S does not coincide with the center
of figure O,, so the fundamental equations for de-
termining stress resultants as well as displacements
will become much complex. Accordingly, the follo-
wing system of coordinates may be useful for the
simplification of dealing with them.

First, let us take the right-hand rectangular coor-
dinates (X, Y, Z) through the center of figure O,.
The rectangular coordinates X, Y, and Z are taken
along the longitudinal axis through the center of
figure of cross-section, in the radial inward, and
in the vertical downward direction respectively.
Second, the rectangular coordinates (&, 7) parallel
to both principal axes through the same point O,

are also specified. The principal axes O,¢ and O,»
are inclined at an angle @ to the axes O,Y and O,Z
respectively. The magnitude of this angle « can

casily be determined by the following formula®,

L 2z
a42tan Toody e (1

where Iy, Iz, and Iyz are the moments and pro-

duct of inertia with respect to the axes O,Y, O,Z.
Then the geometrical principal moments of inertia
I; and I, can be estimated by®

1 -
Ieom:?{lxﬂrlzi VUy =1z +41yz} (2)

Both orthogonal system of coordinates (z, ¥y, 2)
and (z, 17', Z) through the shear center S are pa-
rallel to the axes O, X, O,¢, O,7 and O,X, O,Y,
0, Z respectively, while the other pair of orthogo-
nal ones (%, ¥, %) and (%,Y,Z) through the point
P are also parallel to the axes Sz, Sy, Sz and SX,
SZ, SZ respectively. Between the coordinates sys-
tem (y, 2) and (¥, 2), the following relationship
can be written

y=f’cosa+fsina, )

z=—Ysina+Zcosa. |
The coordinates (¥, 2) have similar relationship to
&, 7).

Besides, the curvilinear coordinates s are taken
If the
symbol ¢ denotes the central angle made by any

to specify the situation of the cross-section.

cross-section and the right end section of a curved
girder bridge, the circumferential coordinates s can
be given by the following equation (Fig. 1(b)).

SR § evveeeerrreiniinieiniie it (4)
The necessary fundamental equations will be deri-
ved by using this curvilinear coordinates s.

Fig. 2 Components of curvature.

Fig. 2 illustrates the components of curvature
about the axes Sy and Sz, so that

py=sin o/R;

p=cos &/R;

2. Fundamental Differential

Stress Resultants and Displacements®

(1) Fundamental differential equation for

Equation for
~1

stress resultants.
Fig. 3 shows internal forces at any cross-section s.
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Fig. 3 Stress resultants.

There axial force along the axis O,X is denoted by
Ny, two shearing forces along the axes Sy, Sz by
Q,, Q., torsional moment about the axis SX by T,
and two bending moments about the axes O,&, O,y
by M., M, respectively.

In addition, the distributed external forces along
the axes Pz, Py, PZ are represented by ¢z, ¢35, ¢z
and the torques about the axes PZ , Py, Pz by 5,
vy, vz respectively. The magnitudes of these resul-
tants have positive values when they act in such di-
rections as shown in Fig. 3.

Let us now consider the equilibrium of those
stress resultants acting on the differential element
ds, cut off by two ajacent sections s and s-+ds, as
follows :

a) Equilibrium of the forces acting in the direc-

tions of axes x, y and z.
By translating all the forces to the shear center

axis the following linearized equations can be

obtained :
%szQy+pr2+%q£=O
d_‘g?s_y+pzNX+%s’_qy:0 ............ (6,
‘igz —/J,NX'F%QZ=0

b) Equilibrium of the moments about the axes x,
vy and 2.

To find the equilibrium of the moments about the
shear center axis, we must take into consideration
not only external torques together with the stress.
but also moments

Resultants, caused by the

eccentricity of these forces. The results can be
written as follows :

4T
‘d—sx—ﬂzMs‘l”ﬂyM,]‘“(pyyo+pzzo)NX

R
+ Rg (rz—2pg5+ypgs) =0

dM, dN R
_dsf—;—zo“dTX+psz‘“Qz+“R—zfj=0 l (7 )is
dM, _ dNx Rp

7=0

I EELP S EE Ry %

where the symbols (y,, 2,) and (yp, zp) designate

the coordinates of situations of the center of
figure O, and of the loading point P with respect
to the system of coordinates (y, z) respectively.
These coordinates can readily be found by Eq. (3),
provided the other coordinates (}7'0, Zo) and (¥p,
Zp) are known.

If a curved girder bridge undergoes an arbitrary
external force, we can readily solve the simultane-
ous equation (6),., for the stress resultants Nx, Q,
and Q..
the simultaneous equations (7),.,, the stress resul-
tants T, M. and M, will be able to be given.

However, for the case of the actual loading con-

Then, by substituting these quantities into

ditions of a curved girder bridge, any external loads
except seismic force rarely act along the axial direc-
tion, so we can put for dead and traffic loads.
=0 reerreee e (8)

If a force g acts transversely and that is inclined
at an angle 0 from the vertical axis, its horizontal
and vertical components ¢¥, ¢¥ in the directions of
axes 0,Y and O,Z can be found by the following
formulae as shown in Fig. 4.

Fig. 4 Analysis of arbitrary force q.
gy =qsind }
g7 =qcosd

Then, ¢y is again resolved in the directions of

axes y, z,
5 = @siné
75 qcos' st ) } ........................... (10)
g7 =—gsinasind
and by substituting these into Eq. (6),.,,
2
&’Nx  Nx _ Rqumg .................. (1D

¢ " Rs R
Next, the components ¢3” and ¢3” of the force ¢7
will be given by
q3” =g sina cos d
gz” =qcosacosd



38 Trans. of JSCE, No. 136 Dec. (1966)

In the same way, substitutiag Eq. (12) into Eq. (6),.,
2
5‘%( +%:’2_=0 ................................. 13
The differential equation for the axial force can
be decided by the above equation (13) when the
force is vertically applied as a dead load. For the
live load, the centrifugal forces would be produced
due to the vehicles running parallel to the longitu-
dinal curved axis of the bridge, but its quantity is
so small compared with vertical load that it may be
neglected. Therefore, it may be considered that the
live load acts vertically. So, & may be put to be
equal to zero for the general curved girder bridge.
G mm(eeecernnceenrernnnerrnnereaieeerinsrnenesressrrines (14)
Consequently, the differential equation for the
axial force of a curved bridge will be reduced to
Eq. (13).
Nx=C,5ind+C,c08 ¢ ++rrerreerrasrrnrane. (15)
As to the boundary condition for Ny, there is no
axial force caused at either end ¢=0 and ¢=9 for
the case when one end is fixed while the other can
move freely in the axial direction. Thus, from the

The solution can be put,

two conditions Nx 4= =Nx =) =0,
Namely, there is no axial force acting at any cross-
section.

We discussed only a case when vertical force acts
upon a curved girder bridge, because the deflected
angle & of the external load is also small in other
practical cases of traffic loading. ~Accordingly, by
eliminating the axial force, the following differen-
tial equations for the stress resultants 77, M,, and
M, can be approximately obtained from Eq. (6),.,

and (7),.;.
a*M,
7}75"‘ 0.2 Mg —py0 M, =
R
~Re (g5 p: (x—2pq5+3pgD)}
s
2
ddgq+py2Mv“pypzMé:
R "‘(17)1~3
_Ié: {g5—0,(tz—2pq5+ypPgad}
daT.
—df“"ﬂzMé‘f‘Pqu:
R

Rz (tz—2pq5+ypPqs)

In general ¢35 and r7 are the distributed torques.

(2) Fundamental Differential equation for

displacements.

The displacements of the cross-section of a cur-
ved girder bridge in the directions of axes Sz, Sy,
Sz are denoted by the symbols «, v, w respectively,
and also the rotation about the axis Sz by the sym-

()
g 7 “
~ - x Y

u

W

Fig. 5 Displacements «, w, w and 8.
bol # as shown in Fig. 5. The sign of the dis-
placements is governed by the same rule as in
the forces.

These distortions refering to the shear center S
in the cross-section s will produce the additional
twisting angle @ and curvature sy, p;/ about the
shear center in the cross-section s+ds. If the ra-
dius of curvature of the unloaded girder is constant
all over the span, these quantities may be written

as follows;
, d*w du
Py =bytp PG 0T
s d¥v du
02 =pz~pyﬂ+7§7+pz—£— ............... (18),

dg dv dw
A

On the other hand, the axial strain ¢, at the shear
center has the following value.

di
ex:%_pvarpyw ........................... (19

Now, by integrating Eq. (18), with respect to
variable s and omitting a constant term which means.
the rotation as the rigid body,

Om= B+ Dy0+ 0,0 veeeveseesienieenieneenees (20)
where the notation 6 is called as the torsional angle.

Next, by the reference (8),

R
M; =72% El:(oy' —0y)

R
M”=TZ—EJ?(P2'~02) L eieriereans D os
do a6
1o=Col g5~ ECugm

where J : torsion constant

C,, : warping constant

E : Young’s modulus

G, : shear modulus of elasticity.
The first term on the right-hand side of Eq. (21),
is named St. Venant’s torsional moment T, and
second term is the secondary torsional moment T,

due to warping,
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To=G.J 247 ]
g (T (22)1s
Ty=—ECyp—5% a5 J
and the stress resultant M, is the warping moment,
M,=E Cw d S eeeeresseenen (23)

The strain ¢, along the axis Sz can also be ex-
pressed by using Nx, Me, M, and M, as follows®

Ro 1 (Ne M, M)
*TRs E.\NA, I, 7T, "
M,
+ e W ceermreemsnnesinnssnnnnninnns (24)
where A : cross sectional area
&, 15 : distances between points O, and S in

the directions of axes O,¢, O,7 res-

pectively.
Since the value Wy, i. e. the warping at the shear
center, must be equal to zero and the axial force of
a usual curved girder bridge is small enough to be
ignored as was mentioned before, the strain ¢, can
be evaluated from Eq. (21) and (24) as

ex=—{(0y" —pydus+ (0" —p2)Es}

Furthermore, by substituting Eq. (18) and (19) into
the above equation, the relationship among displace-
ments %, v, w and # will be found,

1 odu_ 1
Rs ds 1+(;]Q—ismzx+-£—s—cosa>
><{ (pv— p;,w)-i-(——j%;sma——é‘i—wsa)
ﬂ_% _f;_” ;Z ‘i;% ............... (25)

Therefore, by making use of Eq. (25) in (18) and
by substituting it into Eq. (21),., the relation between
the displacements v, w, # and the stress resultants

M, M,, T, will be given.

In an ordinary curved girder bridge, however,
the eccentric distances &s and 7s are negligibly
small as compared with the radius of curvature Rg
Then, by omitting the terms £s/Rs and 75/Rs in Eq
(25), the third term on the right-hand side of Eq
(18) can be described by using Eq. (5).

du e
Py gL 0V Oy W

Ry
0z —5%02% — 030, W

Applying these equations together with Eq. (18),_,
as well as Eq. (21),.;, the linearlized formulae for
the siress resultants M, M, and T, can be obtained
as follows;

M.=—-EJ’ (‘i, 5 0 W— P 00— pzﬂ>

M,=El, (Z2+pzv PyP W — py/9>

ap dv dw
T, GJ( +pyd +0, dv)
a’s d*v dw
~ECul i or G0 )
.................................... (2T)1s
where new symbols I’ and I, are
Iy =21 ]
.................................... 3
; '_.Bil J 28
7 RD 7

(3) Fundamental Differential Equation for
Displacements and External Forces.

By substituting Eq. (17),.; into Eq. (27),.; and

the

basic differential equation for the displacements under

eliminating stress resultants, the linearlized

the external forces can directly be written as follows

[ dv 1 d I I \[d*w
1, R i R o~ +(pypz)2 (l-—I—)v pypz<1 IE ><d2+py )
dZ
— Py {% <Py +0;° 1, ) } g5—0y(tz—2pPq5t+ypPes)}
Esle'[%-i- R12 62 —+ (py0)%e ( >w pypz(l 5—2,)(%—;—# pzzv>
a6 (. '
— g { d 5 02z ..;_pv ) q — 02z (Tz”“qu5+quE)} ..................... (29)1~3
‘s GJ dzp Ie d'v GoJ | I/\dw
EC, [ W T E.Cy ds? +<" c, e’ )’”"y {W‘(Escﬁ_c;“)?z?
I I dw_(GJ I\ dw < L' I\ 1]
e (cw Ca )’“} v (Escf‘c‘;) s\, “cj)wb
R
= Rls) (tz—2zp*q5+YPgD)-

(4) Practical Formulae for Statical Prob-
lem.

For the case when a curved girder bridge under-

goes an arbitrary external force at any situation,

the simultaneous differential equations for stress

resultants and displacements have been given pre-
viuosly, but their solutions might be much compli-
cated.

However, if we consider again a statical problem
in the case of only vertical load, both the shearing
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Qzsina

Fig. 6 Analysis of forces and stress resultants.

force and the bending moment can be given as
shown in reference (11).

First, the components of a vertical force g in the
directions of axes Py and P% as shown in Fig. 6 are
given by following formulae :

gy=gsina

gz=gcosa
The shearing force Q% acting along the vertical
axis S%¥ can be resolved into two shearing forces
Q, and Q,,

Qy=QZsing ) e, 3D

Q.=Qzcos j

On the other hand, the bending moment My
about the horizontal axis O,Y can be resolved into
two bending moments M; and M,.

Me=My cosa
M,=—Mysina
If the Eq. (30), (31) and (32) are substituted into
the Eq. (6),_; and (17),_, the equation for Q¥ will
be reduced to
dQz _ Rp
a5 TR
while by using Eq. (3) the equation for My will

be written as follows :

d'My My _<..RP >2 ..................
dss T Rs Rs q (34)
These equations show that the shearing force Q%

and bending moment My can be determined inde-

pently.

Second, the differential equation for the torsional
moment 7', can be evaluated by applying Eq. (3),
(30) and (32) to Eq. (17),, and by using the solu-
tion My in Eq. (34)

where the symbol ¥p designates the horizontal dis-
tance between points S and P.

Then, by using Eq. (35), a differential equation
for the warping moment can readily be derived.
Thus, from both Eq. (21), and (23)

dzMw GSJ _ Ro s MY

a7 ECMeT R YPITRS
is obtained. It is easily to find the solution A,
under the specified boundary conditions.

The torsional angle 6 can be given by
=1 Mw LY G SR o SN
0= JEst(ds) +Cis+C, 37

Accordingly, the St. Venant’s torsional moment T
and the secondary torsional moment 7, can easily
be found by means of Eq. (22),.,, then the torsional
moment 77, is nothing but the sum of both the tor-

......... (36)

sional moments.
Tysm Tt Typeveereeveessenrasnenniueninieaninnans (38)
The solutions for corresponding variation of
these stress resultants to a number of typical loads
had already been given!»~%.
Next, the differential equation for the displace-
ments v and w can be obtained by applying the
solution of the bending moments M,, M, and of

the torsional angle 0. Thus, from Eq. (20) and

@D
dv v
TZ?%--R;S—Z—:_ZZ_]%_}.!;J& ........................ 39
d? M;
e e €409

These equations indicate that both the displacements
v and w will occur in the directions of principal
axes in spite of the force applied only in the verti-
cal direction. In general case, the displacements v,
w and 6 are not so easily found as the stress resul-
tants Q7 or My, because they are closely related
to such cross sectional gquantities as the bending
rigidities EI.’, E.I,’, the torsional rigidity G,J
and the warping rigidity E;C,, as is seen in Eq.
(27).; or (37), (39) and (40).

While the rotation angle 4 of the cross-section
can be obtained from Eq. (20) by making use of
the solutions of 8, v and w.

B=0— (0504 0520) «+oeerrermmmreoniiiaii (41

3. Fundamental Equation for Free Vibration

of a Curved Girder Bridge.

As to the problem of the free vibration of a cur-
ved girder bridge, let us start with the fundamental
equations (29),_; in which the axial displacement u
may be ignored as its effect is very small. Strictly
speaking, the deformations due to the shearing for-
ces and axial force should, of course, be taken in
to account together. However, the effects upon the
free vibration are so small as to be neglected. So
far as we deal with the free vibration of a curved
girder bridge, we may now principally consider it
as the coupled vibrations of bending and twisting.

Accordingly, the fundamental differential equa-
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tions for a freely vibrating curved girder bridge can
readily be derived on the basis of d’alambert’s prin-
cipal by replacing the external forces by the inertia
forces.

Let us suppose the shear center S is displaced by
v and w in the directions of axes y and z respecti-
vely, and also the cross-section rotates about the
axis Sz by angle £ as illustrated in Fig. 7. That is

d

[
. AN
X e QE/ Izc
Yy Z R
w
- Yo
77
) ]
/ (/
e
[ v
\ ]
. /
——
4
z

Fig. 7 Distortions of cross-section.

to say, the shear center S will move to the point S’
and the cross-section rotates by angle 4 about the
point §’. At the same time, the center of gravity
G will change its position for the new point G”.

If the coordinates of the center of gravity G with
reference to axes Sy, Sz are denoted by y¢, z¢ res-
pectively, the displacements vg, we of the point G

parallel to Sy, Sz will be written as follows;
ve=v—2g*H
we=w+yg*h
On the other hand, the eccentricity yg and z¢ can
also be given in the similar form as Eq. (3), pro-
vided the coordinates 17'(;, ZG of the point G with
reference to SY, SZ are known.

To find the inertia forces g3, ¢z and rz at the
center of gravity G, differentiating partially the dis-
placements of Eg. (42) twice with respect to time ¢,

q;=—A;rs atz = (v—=26 8
qzw__*A;T g (WHYG B) [ 43)
P I 7’3._§_ﬂ_
* g 9z
where 7 : density of steel material
g : accelaration of gravity
Ic : polar moment of inertia of the cross-
section with respect to the center of
gravity G.
For the sake of convenience, we put
me= gg 7;; ....................................... (44)
Ig=Tc+As(yet+2g?) rrerererrerrerenneennse 45)

and substitute Eq. (43) into Eq. (29),.;. Then, let us
take into consideration the influence of curvature,
and denote the projected cross sectional area to
each axis by the symbol A with the suffix y, 2
A =A (l+,0y'2(;)
Ag=A,(1~ pz-yc)
Aye=Asy60y \
Ay =—Asezger, |
Likewise, let the symbol S represents the geometri-
cal moment of area,

Sy———AszG ]

Sy'=Aszetoyls | 47
Sz=AsyG J

Sz/=As'yG“pz‘Is

Consequently, when a curved girder bridge vibra-
tes freely, the fundamental equation will be rewri-
tten in the following form by using the preceding

notations,

Eq, {g?*ﬁt%r (pypz)2< 2;) % +mAy 6t2 Esl,,'pypz<1 2 ) (a 5+ oytw >
_mAyz%i%U—Eslv’py {g;;’;’l'(pyz":'pzz 2: >/9} —mSy’ 652 =0
E.’ {%ig)r Rlsz (; 5+ (py02)* ( i, >w+mAz 77 —EJI pypz<1 -%.:> (gzzi + ps2v >
—mAy;' gtz E o, gzg +<p22+,0y2—§?>ﬂ§ +mS,’ a‘zﬁ =0 ( ...... (48),.5
ECy %%*gsé],,,' gzﬁ +<pz ({j + 0, é’: >ﬂ} +mls*gi§~ |
N
+E,Cyuo., {%—(EGSE,] é‘;) azv+py2<—é'i—— éi) } +mS2 77 @0
These simultaneous differential equations are the  problem can be simplified by virtue of the geomet-
basic ones for the free vibration of a usual curved rical conditions for any usual girder bridge. For

girder, from which the frequency equation for any
special case will be derived. By the way a specified

the present the solution of Eq.(48),_;corresponding
to the most generél coupled vibrations will be found
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in the following sections.

4. Frequency Equation of usual Curved Gir-
der Bridge.

Generally, the displacements of a freely vibrating
curved girder bridge may be represented with the
product of the shape functions ¥(s), W(s), B(s) by
the time function g(#) as follows;

v(s, £)=0(s)+q(®)
w(s, O=W(s-q(2)
B(s, £Y=F(s)+q(®)

where the time function may be considered to be

d'v
ds*

1 4%

EL) { *R*S‘a v + (0y02)?

+pi'mA,wW—El, py{‘jl’f+<py2+p;

4%, 1 4%
dS'TRSZ

I
E1 { +(pypz> < T,

+Pi2mA)’z,Z"“EsI€,pz { Z/f +<pzz+ pyz

I\ ~
e E—————
}:/ )E} +Pi2mSy,/§:0
7

z >7375} *p,-zmAzﬁ—Esle’py,on —£’7—> <

177' ) 2 13
1) 8| ~pimS.F=0

I’I’ 2 2 Z
—C;“> ﬂ} ~piimlsh

<

aF G & I
Escw{ds" “Escw'TzET+(p o
: d% (G, J I\ d%
+ECurs {W‘<Escw "c;> a5 e
4% (G | I\ &%,
+EsCubs {“&T“<Escw'“ Cw) st O (

The solutions for three shape functions 7, % and
% may be represented by the following type of
exponential functions

K,, exp(rps)
The symbol 7, is the roots of characteristic equa-
tion (52) in which unknown circular frequencies
are involved. The symbol K,, is constant of inte-
gration which can be determined by the boundary
conditions imposed upon a curved girder bridge.
Concerning with the characteristic equation (52),
the value r,, should be determined as the roots of
algebraric equation of the 12 th degree, which con-
tains the twelve arbitrary constant of integration
K, K,,--, K,

comparatively easy to solve the frequency equation

If the roots r,, are known, it is
in a simply supported curved girder bridge. In a
continuous curved girder bridge, however, it is a
difficult problem to find the exact solution, because
at the middle supports there are many additional
it appears to be

boundary conditions. Therefore,

to determine the frequency by the

et L)l
s Lpso js=Lg_o

not practical
above mentioned process.

4] [
ds ls=Lg., L ds
[ :|5=LR-0:

ds
oy 2] [Za]
ds? ds® s=LR+n’ ds® s=Lp.o

4o
ds

d2
ds®

sinusoidal without damping

q(l) =sin Pit +cos Pit ........................... (50)
The symbol p; represents a circular frequency, so
the relationship between the natural frequency f;
and the period of free vibration 7T; can be written
as follows;

fi=pil2z=1]T;
Ti=2zlp;=1/f;
Now, by substituting Eq. (48),_,, the simultaneous

ordinary differential equations for the shape func-
tions #, @ and # are easily obtained as follows :

)25 )
—5 dzﬂ‘w

dz“
ds*

L' LN, oo
c. Cw>v}+p,' mS 0
1) I\ —~
C); ~-——C; )w} —pimS 50— =0

Accordingly, let us now adopt the following app-
roximate shape functions to find the frequency equ-
ation as simply as possible.

B(s) = _ 2 77.5%‘(5)

w(s)"‘ 5 W;w;(8) [

()= I bbi(s)
imli2,e

Here, the constants T;, @; and 5; designate the am-
plitudes of bending vibration in the directions of
the axes Sy, Sz and of torsional vibration about the
axis Sx respectively. Variables v;, ; and ¥b; are
only the functions of curvilinear coordinates s.
Obviously, they must satisfy all the geometrical and
the mechanical boundary conditions imposed upon
a curved girder bridge.

For example, if a continuous curved girder bridge
have the middle supports at the section s=L;, Ly,
oy Lp, -,
tion s=Lg can be written as follows.

[¥ils=Lgeo=[®i]s=Lgs=[b;ls=Lps=0 ---(55)
Furthermore, the following conditions of continuity

L, the boundary conditions at the sec-

at the same section can be written,

AL S R b
=Lgsa ds ls=Lg., ds _s=Lgua ]
:]5:LR+0’ [ : 1=LR+0J

&_‘ faw
2 lsmlLpo L ds

ds
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If this bridge is simply supported on both ends s=0
and s=L, the end conditions should be given in the
following form,

[vils=0 =[®;]s=0 =[b;]s=0=C }
[vils=L=[®;)s=L=[5;]s=L=0

)T F ] |
AT =y

In addition to the above conditions, every shape

and

functions should be determined so as to satisfy the
conditions of orthogonality; i.e., when i=j (=1, 2,

L L L
J Q,v;ds=0, Jo Q;0;ds=0, J Q;5,;ds=0
Q).
dd‘f v;ds=0, ddﬁtwjdp J dd‘ﬁ‘b,ds 0
L'y, L, ary
Jo 2y;ds=0 J —JSTCl)de =0, J — b;ds=
.............................. (59),s

where the symbol Q; is a representative of three
quantities v;, w; and b;.

By substituting Eq. (54) into Eq. (52), we can
find the ratio between ©;, @; and &; corresponding
Apply-
ing Galerkin’s method and considering the orthogo-

to a minimum value of circular frequency.

nal conditions of Eq. (59),.;, a set of linear simulta-

neous equations for unknown amplitudes o;, @; and

b; can be obtained as follows;

' L L L -
{(Pi,zzw '—Piz)AyJ Vi2d5 U;— {(P;,iv“?iz)z‘lyz Viwids}‘wi“ {(Pi,zﬁv “Piz)SyIJ Viﬁids b;=0 ]

@*I

{(p, cw—PiT) Ay Ll,‘«wlds% T;+ {(p, cw —p,z)Az w 2a’s}w, {(p, b0 —0iDS:2 J w;b; ds}

- {(Pi,zvﬂ —pi") SyJ'o V:‘bz‘ds} i+ {{P;,?pp “PiZ)SzL’ wihid5§ Wi+ %(P;,zpp ~pi*) ISJO bizds I;i=0 J

........................................................................... (60}
where the values p,%,, £:2.,, pifgﬂ,'-- are determined by the following formulae;
AL d'v; L1 d?y; N\ (L . 2 L
05, =E, % T ——ty;ds— j Rs? ( p )V,ds+< i, )L (oy0)’vs ds} /mAJ,J0 v;?ds
’ L 20 L
bil,= —ESI”’(I—-—%?—) {[ pypz< dd )u ;ds— J 0y 0 0v;ds }/mAsz w;v;ds
PRVAY )
2 ‘ L
i 5, =—Ed, J ( ‘fib )V,ds J' ,Oy(py2+,022 ﬁ:, )b,‘V,‘dS} /m.S'J,'J0 b;v;ds
L
Pi,iw =—E1 ( ){J pyﬁz( ds? )Vzds J oy0.°v;0ids } /mAyzl 0 viw;ds
2 N [F dloy R _J'Li< d’w; (_ 77, JL 2.2 }/ JL 2
pilu=El | Jo Gtwds— || (-~ G )eds +(1 —$) L o)t ods| [mA, | wids
. Lifr a%; L I/ L
AN SN O iy
L 4 L
pits=—ECCy ;J Py Lfly’ b dsT(EGC{” éw )L p_y( ‘i,yi)b ds
(L' 1, '
C > 0y022v;5; ds msS, V ibids
2 L ; ( GSJ Ié ( d*o;\,
Piwp =ECy U' [ e s b;ds+ E.C. Co ) oz ds? )bzds
1,1 . L
( Ca )Jo Py pzw,b,dsé/mSzL w;b;ds
L d% GsJ a%b; L 1.’ 1) L
L2 ’ Radind 1 TN 2 28 52 07 2 2
2% =ECy Uo a5 b; ds+E Calo ( T )b,ds+jo (,oy o oz C )b, ds} /m]sJ'0 b;%ds
........................................................................... (6D

and also they represent the circular frequencies modes have a certain value other than zero, the de-

corresponding to each individual vibration. terminant containing the coefficients as the elements

In order that every amplitude of three kinds of must be équal to zero. Thus

L L L
?i% “Piz)AyL vi’ds (Piow —P;Z)Ayzjo viwids —(pi %, “Pi2>Sy/J' vibids
L L
~(Biw—PiDAY | viids  (Pijw —pf)AzL w;%ds (P 5w =0z J obids |=0ueeenrennens (62)

L
— ik~ b >SJ v ibids <z>,»,iﬁ~z>f>szjo wibids <p,~,ﬁp—p,~2>lsfo b ds
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In general, the form of individual shape function
is more or less different from every other. Never-
theless, it is pointed out in reference (5) that the

common shape functions may be used approximately
(Pi,zvv "PiZDAy

- (Pi,?zw "Px'z)Ayz’
—(p: % — 2Dy

This is an approximate form of the frequency

(Pi,ﬁrw ’“Piz)Az
(Pi,ﬁlﬂ ”’Piz)Sz

equation for determining the circular frequencies p;
of a curved girder bridge having general cross-
section. After the solutions for p; are obtained, by
substituting those values into Eq. (60), the ratio
between amplitudes ¥;, @; and &; will readily be
given. Thus, the patterns of the vibrations will be
made clear.

Finally, as is seen from Eq. (44) to (47), (6L),
and (64), the values p; are governed by the geome-
trical properties of the structure, namely, the quan-
tities L, @, Rs, A, S, I, J and C,. So, it is mean-
ingful to discuss the effects of these values con-
cretely, and also introduce some special cases of

frequency equations.

5. Approximate Solution of Frequency Equa-

tion.

(1) Plane shape and cross sectional quanti-

ties.

The frequency equation has been derived on an
assumption that a curved girder bridge has a con-
stant radius of curvature and a uniform cross-
section. If these quantities vary continuously along
the axial direction, it will become much difficult to
solve the fundamental equation of motion.

However, the radius of curvature of the usual
continuous curved girder bridge may be approxima-
tely assumed to be constant in each span as shown
in Fig. 8, where the radius of curvature in each
span are denoted by Rs,;, Rs,s s Rs.rs **» Rs,ns
the central angle by @,, @,, ---, ®,, ---, @,, and also
the span length by L,, L,, -, L,, ---, L,. The sub-

Fig. 8 Plane shape of curved girder bridge.

for them when they obey the identical boundary
conditions as given by Eq. (55) to (68). So, putting

Yy ;e by e Qg eeereeenenien et (63)
Eq. (62) can be simplified as follows;

- (Pi,%w —'Piz)Ayz - (Pi,zﬁv —'Piz) Sy,
(P;,,%w — PSS =0 e (64)
pias— i s

coordinates s, having the origin at the support r
will be used properly as the curvilinear coordinates
in the r th span. The sign of quantities Rs,, and
®, are positive, if in the r th span the girder is
bent toward the right side as we proceed from the
origin s5,=0 along the girder axis in the direction
of coordinate s.

Strictly speaking, the cross-section of an ordinary
curved girder bridge varies somewhat, so the mean
values of all the cross sectional quantities may be
adopted practically. Because the problem of free
vibration is not a microscopic one of investigating
the local deformation or the stress distribution, but
a macroscopic one of clarifying the dynamical be-
haviour of a whole bridge. Considering these situa-
tion, it is to be expected that the errors included in
the approximate solution for frequency will not
be serious even in the extreme case of girder bridge
with varing height!¥.

Accordingly, when a symbol Qw,, (s,) represents
all the varing sectional quantities in the 7 th span,
the mean values Qw of Qw ., (s,) may be given by,

. Ly
Qw,r=%_[ Qwr () dsyreeeervererasees (65
r Jo

Than, the mean value Qu* all over the bridge can
be found by

QW*='§‘117QW”'/’Z:'IZ" ........................ (66)

Here, the weight /, is the ratio between the » th
span and the reference span. Namely, we put
lely lzsz/Ln """ > lr:Lr/Ln ln=Ln/L1

Thus, the mean values Ig*, J* and C,* can directly
decided by Eq. (65) and (66).

However, as to the cross sectional area A; of a
usual bridge, we must take into account not only
those of the main girder but also of the slab and
the secondary members such as floor beams, dia-
phrams and so on, since the area of the latter is
usually not much smaller than that of the former.
Therefore, the cross sectional area of the bridge
may be replaced by the dead load intensity wg,,
per unit length, namely,

Ag (5 =g,y (5)[Ts  wreemvremmmmssnsiisens (68)
Then, by using Eq. (65), the mean value of the r
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th span can easily be found.

On the other hand, since the radius of curvature
Rs, Rop or Rg should be included in the formulae
for the mean values m*, I;/*, I,’* as is seen in Eq.
(44) and (28), they have to be determined from
following equations instead of Eq. (66).

e 311 Rs : ., /ng .................. 69)
R
1/*507’9_ P Rs T Tiorg*ly / ............ (70)

Furthermore, the mean polar moment of inertia
Is* with respect to the shear center may be written
as follows from Eq. (45).

” Ly
Ig¥= % _[g:’_J. e, )+ As 7 (5) o v6.,(5r)
r=1 r JO

n
Ao vze o) s 30,

If the mean values of each span are used, /s* may
be written approximately,

n — ”
Is* 16"+ 3 (Koot + 5a. M| 3 1r

In the similar way, the mean values A* and S* may
be given from Eq. (5), (46) and (47).

Ay¥= 2’ As,,(l+ ' sin &, >l

lv_]a
o

h
]
-

RS.r
Y

~
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-

bgs
o
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Q
Q
@
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o
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~
1
-

3% 5 T 2G.r — &
Ays :——2(_+As,,RS cosoc,)lr i,

r=1 N r=1
.............................. a2
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n [ _ _ n
S;*:;,;(AS et Jsma,) l’/ﬁl’
no__ n
S}'* ='2,1As rZG'rlr/rév I
» — iS ’ _ 7
Syi*e= 3 {i<As »Ye6 "R - COSO/r)} lr/):lr
ral S,7 r=1
Sz* = 2"'

-
[
-

Fig. 9 Cross-section of curved girder bridge.

The signs of ¥¢,,, Z¢.r, &, in Eq. (72) and (73)
are illustrated in Fig. 9, in which two cross-section
(a) and (b) are completely same in shape and size,
but these bridges are bent toward in the opposite
direction to each other. Therefore, if the positive
direction of rectangular coordinates s, in Eq. (60)
is defined to be coincided with the positive direc-
of G,

and the angle @, of the inclination of neutral axes.

tion of coordinate s, the coordinate ¥g,,,
must have the negative signs in Fig. 9 (b).

Consequently, the double signs in Eq. (72) and
(73) must be positive (or negative), if Rg,, is posi-
tive (or negative).

(2) Approximate solution of shape function.

Let us consider the shape function for the » th
span of a curved girder bridge shown in Fig. 8.
The approximate shape function analogous to Eq.
(53) may be used as the solution of our problem
but all the boundary conditions and also the condi-
tions of orthogonality should be satisfied by these
shape function. So, the following function will be
adopted approximately,

Vi =0, =0;,, =0,
1rsink;s,+A; , cosk;s,
+M;,, sinh k;s,+ N; , cosh k;s,-ovee- < (T4)

where the symbol %; is a parameter concerned with
the span ratio /,, and the symbols K;,,, 4;,, M; ,,
N;,, are coefficients determined by the boundary
conditions.

From Eq. (65) to (58), the boundary conditions.

are rewritten corresponding to Fig. 8,

[0 T5rea= [0y DsyuLy =0 weverveeriemiencens (75)
at all the supports including the end supports r=1
and r=n+1. The conditions of continuity at the

r-+1 th support should be written as follows,

d Q;,» _[:d Qi.rﬂl
dS, sp=L, B dsr-)—l rti=0 1
[dm,-q _[dznf,ml J
ds,® ls,-L, B dspi)® Jspiimo

And the conditions at both ends =1 and r=n+1

Q7| _[d g Qe
‘: ds? :Lx:abq[ ds,’ :Ln=Ln =0 an

From these Eq. (74) to (77), the following appro-
ximate shape functions can be obtained for the two

are

cases.
a) Simply supported girder bridge.
In a simply supported girder bridge, we can put
n=1 and A4; ,=M; ,=N; =0, so that
Q. =K, SID ks, vvereveerieeiseeniienineann 78
where
kiL=iz (i=1, 2, 3., K,
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b) Continuous girder Hridge.
The shape function of the » th span may be given

approximately by the following equation’.

Q=4 [Sin {ki(Lr—er}__‘Sinh {k,‘(L,—S,)}

sin k,’Lr sinh kz'Lr
sin k;s, sinh k;s,
+Ai”“[sin kL, sinh kiL,] .... (80

Tt is clear that all the boundary conditions (75) to
{77) are satisfied by the above function. Herein,
the shape parameters %; (i=1,2,3, --) can be deci-
ded by solving the following (#—1) simultaneous
-equations.
Ai,rlrwi,r“‘Ai,r+1(lr)fi,r+lr-.\-lli,ﬂ-x)
A praly i pg =0ereeenmienns (81)
(r=1,2,3, -, n—-1)
From the end conditions (77),

‘The variables ¥;, and z;, are the function of
Z,k;L,. (see Appendix)

1

Wi,r=m—l «(cosec Ik;L,—cosech [,k;L))
1

Zi’r:lrk,'Ll +(coth L,k;L,~cot l,k;L)

As Eq. (81) is the linear homogeneous equa-
tions, a transcendental equation f (&L,)=0 1is
obtained by putting the determinant built by the
coefficients of A4;,,, A4, o0y Aipy vy A;n equal to
After the roots k;L, have been determined,
the ratio among A;,,, A;.,, -, A;p, =+

decided by substituting them again into Eq. (81).

zero.
, 4;,, can be

So, denoting this ratio by the symbol %;,,,

250=0, 2 ,=1, -, Li o= [ 40, o, A =0

kiL,=(2i-1n

=3.927, 7.069, -, (L+o.25)n; for 2nd, 4th, -+, 27 th mode

2

Accordingly, the odd modes are the same as in sim-
ply supported girder bridge and are asymmetric,
while the even modes are symmetric.

(3) Values p;%,, p; 2y P:%ys - ete

Before estimating the values p;5%,, Pi 2w Pi%p =
etc., it needs to inquire whether the approximate
shape function, obtained in (2), will satisfy the

Now, the trial and error method is suitable to de-
termine the roots %;L,, but it requires much labour
in numerical calculation. However, when the varia-
bles ¥; , and x;,, are given in the form of table (see
Appendix), it is comparatively easy to find the first
approximate solution [%;L,],, When more exact
values [k;L.),, [k;L1s, -+, [R:L.]p, *=
we can obtain it by the following formula.

W27 P PR V77 S PR o -0 27 7 PRI (85)

Hence the notation [4k;L],; is

value for making the value [%;L,]; more accurate,

are needed,

a compensating

it can be estimated on the basis of Newton’s
method.

kL= -Lr L B e
where the derivatives

dy,i,r/d(kil‘l) =¥;,’ and d 2;,,/d(k; L) =x;,,
involved in the function

d f(k;L)/d (kL)
can easily be found by applying the following for-

mulae;
Cir q/i r
. = _ '
R (87
Xi,r'=kiL1q’t.r¢i,r—£f“
1441

where new variables ¢;,, and ¢;,, are both the func-
tion of L k;L,. (see Appendix)
¢; p=cosech [, k;L, coth [,k;L,
—cosec Lk;L, cotlk;L,
@;.,=cosec [, k;L,+ cosech [,k;L,
Especially, in a two equal span continuous girder
bridge, it can be found that the values &;L, are
readily as follows;

; for 1st, 3rd, +-, (2¢—1) th mode 1

conditions of orthogonality or not.

First, in a simply supported girder bridge, it is
clear that all conditions (59),.; are satisfied by them.
Therefore, the shape function (78) gives a set of
exact solutions.

Next, in a continuous girder bridge, differentia-
ting Q;,, in Eq. (80) twice and four times with
respect to s,,

dzﬂ,',,= —k-2(1~ [Sin {ki(L,—s,)}

ds,* sin k;L, sinh k; L,
i sin k;s,  sinh ks, J
”"’“[ s L, Sinh kL, )
TR
dd&::;r:kidgi.r

+ sinh {&;(L,—~s,)} ] W

the following equation will be introduced by making use of the integration by parts.
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4 Ly
Jo Gtesas= F “sron~ghran |
_ 2(% szz r d‘Q] 4 _ dzﬂi,r+1_dﬂj,r+1l } % dsz] I dQ,,,
ds,* ds, s, Ly dS,il dspir space “ds® Ly
_ dzﬂj.r+1.d‘o'i.r+ll }) <{ d*Qy,y d'Q] 1:L [dzﬂi‘n.dﬂj,n }
ds,2, dsprr spaimo ds? 1=0 ds,* dsy _nLa
{\:dzﬂj T dﬂ,,,—L _l:dzﬂj,n a9, }
ds,"  ds, s ds,?  dsy lsu-L,
o,
+J0 = 0 O O PPN oD

The first term on the right-hand side of Eq. (91)
wvanishes from the boundary conditions (75), the
second from the conditions of continuity (76) and
the third from the end conditions (77). Therefore,
when Eq. (90), is substituted into Eq. (91)

L L
k;“J; Qiﬂjds =kj‘J0 QjQ,'dS

is obtained. For i¥j with k;%k;, the relationship
of orthogonality

L
Jo Q0 ds=0 eeerecermeeeriemneennieneenes (59,
Ly )
,[o — Qids=0 «overereennniini (59)',
«can be obtained.
Similarly,
dz‘Qt o t 4 dﬂj,, ) L,
J’o ds*t Qjds= 2’ Q.= ds, Qi.r
L
+J0 ddﬂzJQ s reerreeienenn 92)

is given, but the first term on the right-hand side

must be equal to zero by the boundary conditions

(75). Consequently,

dzﬂ d*8;

2i0ds= Jo 7 )
However, it is evident that another condition (59),
can not be satisfied even if Eq. (90), is substituted
into the above eguation.

In order to satisfy this condition perfectly, the
shape function should take the same form as Eq.
(563). Though the above approximate function Q; is
quite proper for the conditions of orthogonality
(59),,,, the errors will be produced in the re-
However, it is important

Q;ds.

[

maining condition (59),.
for structural engineering purposes to examine the
lowest several modes of vibration. Accordingly, this
paper deals with only the lowest several frequencies
for the sake of simplicity.

Finally, by the above mentioned simplification,

the values $;%,, p: 2w p,-,zﬂﬂ, .-, etc., contained in

the frequency equation, may be obtained from Eg.
(61) as follows;

?,\? n /@, 0\
& 4; Y= )r;,sin*2€&
E L, [ (1> 1, I* ,i<l>” 1
Pi,zvv=mm;%‘mi (kL> "‘(kL )2_1_—_.._+Z(1_~ Ii/*) : z P
L Pir X rir J
r=1 r=1
EJ0* VRS J y(%) ;r8in(£2@,) L}(%{ Pi.rsin®d@,sin(=2&,)
P'z —— sty (1 __€___ (kL>2r 1 _r=1\ir
ne 2m*Ay* L L \ 3’ :\7 ;
r=17;,r '=1[7‘,,
L] n g
¥ S 554;,sind, X 2ry Pirsindg, (sin2 afl—li,;kcos?a,
Pzﬁ — Eslrz___ (kL )zr=llr = lr Iy
i fo = m*Sy’*L13 il 7 ~ J
2 Vir 2 Vi
r=1 F=1
n 2
% ;) & ?Z 4;,,sin(*2a,) 3’ % 7i.rCOS7,sin(+2d,)
P.Z - st (1 >(kL)2r 1 _r=1\1lr
ow = T A R T " p
2 Vir 2 Vir
r=1 rel
7 (D,\? 7 (O N\
. v 4. ) Ny, sint2&
p.2 _ KL (RiLy — kil >2f"=1(1,) i +i(1_£v_7_/f>'z='1<lr> virsin?2@,
foww 77'1»*14;’7;,4 Lt Lt n ] 4 IE/* 2”7 .
0 r=17z'r.
n [+ ”n d.\3 (£
i >y (i—l 4;,, cos @, Z’(i—' Vir cos&,(coszo?,ﬁ—lél* g
Pf: _ Es]£ (B L )2r=1 1 ! 1, 1’]
t,w"m*Sr*La 441 7 -
= rlei,r ;17""
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n @ 7 @
Y —Lpi.sind, Y 5~ 4d;,sin@
EsC,* | 2,7, i L7 (G, 2,7, dirsingy
pia= g | Ly e DG g el
¥ 2 Vir -)-/' Vi.r
7 =1 r=1
n (B, \ ae o o
L Py T) Vi,rCOS*@,sind, 1
o (= I T
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;;l e /
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! 2<i - Pi.r COSE, 2 ,gv +—-r d;,,CcOs &,
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Piws = TEowrs (le]> oo e o L% (kzLx)z
BT kS KL S ” Cw*\ Es € ”
| T vir 2 Vi
L r=1 r=1
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L Tl i )V,-,rsm b cosa,]
+ o (L e ,
© PR
2
. o 34, ., }(‘&) P (L™ cos? @, + I,/ * sin® &)
P_Z - ECyu* Ck;L )4+G$J L, Ck;L )2’=1 _l_’l_ =1\l
BB T ORI RL A N EC,* 7T 2 Cu* n
’2171',7 .2'1’71 7
\ pl ot
............................................................................ 93)
where quantities p;,, and 4; , are given for each case.
a) Simply supported girder bridge.
1
Vi,i':Ai,r:? ..................................................................................................................... (94)
b) Continuous girder bridge.
Pir =l At di e b A il e 95)
Ai'r:lr{(Xi,rz“{";‘i,m—lz)’/z',r+xz',rxi,r+19i,r}
New four parameters are also the function of I, k; L,. (see Appendix)
1
/h’.r=—2—(lrkiLn/fi,r%,r*Zi,r) |
|
Eir=Cir—Yinr l
................................. (96)

i,y =5 {cosec® [, k;L, +cosech® [, k;L, — T_IST (coth /,k;L, +cot l,k,-Lx)% {
- rity 1

]2’2 —(cosech 1,k;L, coth I,k;L,+cosec l,k;L, cot ,k;L,) ‘
e i /

6. Practical Formulae
(1) Coupled vibrations of three displacements v, w and §.
a) Curved girder bridge having usual cross-section.

Oz'm:

For a usual curved girder bridge having unsymmetrical cross-section the frequency equation is reduced

to
- (Pi,iv_Piz)Ayz* - (Pi,zﬂv —piz)Syl*
Bt DA™

(Pi,zvv MPiZ)Ay*
- ( Pi,iw "piz)Ayz/*
Py =0

(Pi,,zew*Piz)Sz'* PN <)

- (Pi,zvﬂﬁpiz)Sy*

(Pi,?aﬂ —pi")S*

It has already been mentioned that both bending vib-
rations in two perpendicular directions are always
coupled with torsional vibration.

b) Practical formula for usual curved girder bri-

dge.

It takes much time to find the roots p; of Eq.
(97), but in a usual curved girder bridge the angle
of inclination @, of the principal axes is generally

Thus,
sin &,==0, cos &,==1

(r=1,2,3,:-,n)

small.

Besides, the coordinates j¢,, and Z¢,, of the cen-
ter of gravity G, are so small as compared with the
radius of curvature R; , that from Eq. (72) and
(73) the following relations are maintained,

Ayk= A=A
Ayz*szz'*zo .............................. 99
Syk=S5,*

Furthermore, by taking Eq. (98) into consideration
Pz‘,im=Pi,2,s»=Pi,3w=P,~,2,,ﬂ=0 ............... (100>

and
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”n [7)] 2
EJ* [ 2(‘1—’*) 4;.r
2 (BT Ner=N tr
pi,vv_‘ﬂl*A *L l(kL (kal) "
2 Vir
r=1
n [} 2
| ()4 |
E /% F=a\ L ©r
Piw= g | LD = (L
[ ré’lVi,r
n ®r n 1)) 3
E % | ;21<+' I >""" ,51(i zr>‘7”1
pi’%m:m IE*L . (k L )2 — r — — L (101)
z ! Vi 2 Vi
{ F=1 =1 ;
2T (=) |
i -5 M,
POPTORND 0N PPANE: S a0 (< L N
fwh T kS RS n Cw* E; ¢ e n
3 Fir S rir
r=1 r=1
3 (2
ECu* J < iHr I./*L.2 r=l(T> Vir i
Pi,zﬂpjﬁz*—w[l‘r (kL)‘-.LEC*(kL)Z ~ +$Cw*’- ”’ |
! 2 Vi.r 2 Vir
r=1 r=1
The frequency equation can be rewritten in the following form.
(Pilo—piNAS* 0 pi*Sy*
0 (Pi,zrw_Pi2>As* (Pi,,zew““PiZ)Sz'* T T P P PP PPN (102)
pi*S,* (Piiﬁ - S (Pi,%p —p I*
¢) Straight girder bridge having an unsymmetri- and in Eq. (10L)
cal cross-section. O, =0 (rr=1,2,3, -+, ) wvevrererresonunecns (104)
If a straight girder bridge has an unsymmetrical Thereb
ere
cross-section, the following relations can be availa- r Y,Z
2
ble besides Eq. (99) Pi,ﬁw=P:,wp=0 ................................ (105)

SF = Sy et (103) For this case, from the frequency equation (97),
(pi,zvv—pi2)44s* 0 PizSy*
0 (P u—pDDA* —p2S* G T N, (106)
pi*Sy* —p#S* (pilp—pOHI*
Now, all the frequency equations (97), (102) and (106) become a cubic equation;
A(PY? by (PiP) ok i — =0 creressutniiin it (107>
Especially, in Eq. (102) the coefficients a, b;, c;, and d; have following values,
a=Atlg* — 85— S %S, *
biZAS*IS*CPLZW+Pi,iw+Pi,zﬁﬂ)"Sy*zpz',i)w—Sz*Sz’*(Pi,zvv+Pi,§/ﬂ+Pi,zﬂm) 1 ............. (108)
= A P2 Pi Lt P ) T+ 02 s} ~ S L Pi Bt Pi )+ P Bop i Bk [
d; = (AFKISH P 5 i 55— S840 Lp i 5 Pis

but it will be sufficient for a straight girder bridge
to use Eq. (103), (104) and (105) in Eq. (108).
For the triple coupled vibrations, the complete
solution of natural frequencies p; will be obtained
by solving the cubic equation (107). The approxi-
mate roots of this equation can easily find by means
of Cardano’s or Newton’s method. All these roots
), and pi,x

<pi,p<<pi,m represents three circular frequencies in

p; are real for each mode (7=1, 2, 3, -

these coupled vibrations.
It should be understood that the inequality p:, 1<C
Piowws Pioww<Piu<pigs and pim>>p; s will be

established among three roots pi,1, piu, pim and
uncoupled frequencies p; .y, Pi,ww, Pi.ps> if an ine-
quarity p;,we<pi.oo<pi.ps is assumed.

(2) Coupled vibration of two displacements

w and B.

a) Curved girder bridge having special cross sec-

tion (S,*=S,*=0).

If there is eccentricity of the center of gravity
only in the horizontal direction and the angle of
inclination of the principal axes disappears, that is,
the statical moment about the axis Sy will be equal
to zero,
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S, Km0 vt ettt e et e e e erae s (109)
Therefore, the following frequency equation will be obtained,
(Pilou=piDAH 0 0
0 (Pi,iw_Piz)As* (p;,ﬁw—piz)Sz’* T P T 110
0 (Pi,ip—Piz)Sz* (Pi.zﬁﬁ-“piz)ls*
From the above equation, it is clear that the ben- Eq. (104) and (105) in Eq. (110).
ding vibration in the vertical direction is coupled The solutions of Eq. (110) will have the follow-
with torsional one. ing values,

b) Straight girder bridge having symmetrical bi+ /b — 4 ac;

2a < (111)

Pi» 1 or =

cross-section about one axis (S,*=0).
If a straight girder bridge has a symmetrical Pis w=| Piow!
cross-section about the vertical axis,we may adopt where the coefficients a, &;, and ¢; are as follows;

a=Ag¥lg*—S,*S,'*
bz’ :As*IS*(Pi,Z;w +Pi,z§p) - Sz*Sz/*(Pi,,zaw +pi,?pﬂ)
=As*IS*px',5)wPi,2,Bﬁ "‘Sz*Szl*Pi,,zewPi,zwﬂ

Consequently, there exist two coupled frequencies girder bridge has a circular camber with comparati-

P
~
o
—
]
~

pi,1 and pig for the ¢ th mode. If we assume, for vely small curvature, we can put,
instance, p;,ww<<p: s the relations between p; uuw Sin &, =1, COS @, =0 rrrreenriruiiiiiinniiins (113)
{or p;, ) and the root p;,; (or pip) will be given (r=1,2,3,,n)
as pi,1<<Pi,ww and pin>>p; gp. Furthermore, if the eccentric distance ¥g,, is small
(3) Coupled vibrations of two displacements as compared with the radius of curvature Rs,,,
v and 8. from Eq. (72) and (73) we obtain,
a) Special curved girder bridge (S;*=S,%=0, A=A =Ag*
a=z/2). Ape¥=A,%=0 [ oerriiin (114)
In a special curved girder bridge where the cross- F=8,"%=0
section is bisymmetric and has a curvature only in Accordingly, the values p;%,, p: 2., Pi,zﬁﬂ; """ ete.
the vertical plane, that is to say, when a straight will be computed by
n @r 2
El,> kL) — (kL 2’§1<77> dir 1
Pi,w:m By L)t — (ki L) e
,{117 7
L9, 2o\
2 Eslﬂl* 2”2=‘1 Zr A’ " 7’:1(7:) Vir
Pi,ﬁyz—mﬁ*s*r;kz“g (k:Ly) 7 - 7
> ! Z_YIVi,r gle r
” [0/ 2
=) 4;,
E I.'* I ,=1< l ) ST
2 =1 s°s . 4__ 7 . 2 L4 ——— ] devsaasressaaiarcanas
Pi,ww Wm*AS*LI‘ ) (kzLx) Kkzlﬂ) ,1. / (115)
2 P
n 07’
. B E,C,* /[(kL) r{ITVZ 4 _E(GSJf ) il )2721—,41 7 ]L
Piop 771*Sy’_kz:31 e n Cu*\ E, n i
[ 21171 7 rZ:'le r J
n y n 0] 2
nl - 2 i 2 — Vir
EC* j GsJ*L? =1 I*L 2 N2 ( I, > 4
Pi,zﬂﬁ :m (ki L)+ E':Cw;: (k;L)? - -+ Cw* m
2 Vi.r 2 Vi.»
r=1 r=1
The frequency equation will become as follows;
(pi,zvv_Piz)As* 0 "(pi,z,/iv-—pf)Syl* I
0 (Pi,iw — A 0 T Pt (116)
— (Bl 2DSy* 0 (Pisp= I

It can be seen from this equation that a bending vibration in the vertical direction is independent,
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while a bending vibration in the horizontal direction
coupled with the torsional one.

b) Practical formula for S-shaped curved girder

bridge.

Let us now consider another special curved girder
bridge as shown in Fig.10. There, Fig.10(a) shows
a two equal span S-shaped continuous curved girder
bridge, while 10(b) a three span S-shaped continuous
bridge where two side spans have an equal length
but reverse curvature. In the center span, the gir-
der is straight and has a bisymmetrical cross-section.

Devoting our attention to the signs of Rg,, and
®,, we understand by observing Eq. (72) and (73)
that the neccessary equation will coincide with Eq.
(114), then the equation to give the values p;%,,
Pilws p,-fﬂﬁ, .-.etc. will be identical with Eq. (101),
where Eq. (105) is also available.

Thus, the frequency equation will be obtained as
follows.

(Bil— DA 0 —p28,*
0 (Pi ow—PiHASF 0
S 0

This equation shows that the bending vibration in
the vertical direction is independent and that the
bending vibration in the
coupled with the torsional one.
¢) Practical formula for a straight girder bridge.
The cross-section of a usual straight girder bridge

horizontal direction is

is bisymmetrical and that has no curvature about
any axis, so using Eq. (104) in Eq. (115) we can
put
Syk=8,"*
and
Pi,zpu‘—‘Pi,zz;p:O
a=AHIgk—S,*S,*
bi=AFIs*(p;k, +Pi,zﬁﬁ) _Sy*Sy,*<Pi,2ﬂv+Pi,zvﬁ)
= AS*IS*Pz’,?;wPi,zﬂﬁ - Sy*Sy,*Pi,%vPi,zvﬁ

From this, two coupled frequencies pi p<pi,m can
be determined and if the value p; 45 is greater than
Div0, we find the inequality pi,u<<pi,uu, Pim>>pi,pp-

(4) Uncoupled vibration.

0,
(a) two-span

0,

R;

Ly

AN ~®,
—R;

o
(b) three-span
Fig. 10 Plane shape of S-shaped curved girder bridge.

(v enrneereeeannn e aettnn e eeureeetahaeeeenniaes A1D

(piGs—pDHIs*

in the frequency equation (116). This will result
in the same form as Eq. (117). However, note that
the influence of curvature must be taken into acco-
unt in a S-shaped curved girder bridge, while cur-
vature disappears in a straight girder bridge.

Finally, for any values of a, b;, and ¢; the circular
frequencies will be given by

Pis 1 =Ipi,ww[

b,‘i‘ x/b,-z—4ac,- "'(120)
2a

Pis» B or WT

where coefficients a, b;, and ¢; can be obtained as
follows;

If a straight girder bridge has two axes of
symmetry, namely,
SyF=SFm0 e

The frequency equation will become,

[y
N
B
2

LO ......................................................... (123

(Pi,gvv_PiZDAs* 0 0
0 (i mu— DD As* 0
0 0 (peop—pHIs* 1

This indicates clearly that both bending vibration
in two perpendicular directions and the torsional
vibration are always uncoupled and independent

each other. So, the circular frequencies can be

obtained by
pi::}Pi,vv ]
Pizlpi,ww]
Pi=|pips!

................................. (120
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III. EXPERIMENTAL STUDY.

In order to-verify the above theory, both field
and model tests were conducted about four types of
curved girder bridges constructed near the city of
Osaka.

1. Example of Triple Coupled Vibrations.

a) Nishinomiya Bridge at the interchange of
Meishin Express-Way.

This bridge is fabricated as a two equal span

continuous curved girder bridge as shown in Fig.
11 (a).

The bridge consists of two box girders and

(a) general plane

9.000m |

1690 7.800m

& v

n © “
6% U ARAspahli
QG Superelevation ~pavement.

©
2 ]

| 1500m L;ppﬂ_]

]
e L
1.300m | 1.500m 3.400m
(b) typical cross-section
Fig. 11 Detail of Nishinomiya bridge.

a reinforced concrete slab as shown in Fig. 11 (b).
Although the bridge was calculated as
composite girder in the design, it was recognized

a non-

from the statical loading tests the main box girders
resisted as a composite girder to one vehicle, be-

cause there were considerable composite actions by
means of the slab clamps and the frictional resistances
between the top cover plates of the box girders
and a concrete slab.

Table 1 Cross sectional quantities of test bridges.

Vlues | Nebzomive | NegaaBr | JusoBr | Ggkeneshims
Ag*(cm?) 1.2713x 104 6.3299 X 10° 9.674x10° 5.9501 x 10
Sy*(em?®) 7.3040 X 10° —8.9204 x 104 — 1.7999 X 102
Sz* (ecm?) 5.3531 X 10° 1.4071 X 10° 4.452x10% —

Sz *(em?) 4.3197 X 10° 1.1440 x 10° 4.013x 10° —_—

Ie'* (emY) 1.3834 X107 1.5431 %107 1.057 x 107 6.0240 % 10°
[,1' *{cm?) 3.4881x108 9.5503 % 107 1.765x10® 1.7665 % 10¢
Is*(em?) 4.2203 X108 1.1467 X108 2.086 X108 1.9204 x 10*
J*(cm?) 9.9898 x 106 2.7333x107 2.173 % 10° 7.5834 X 102
Cy* (cm®) 8.2144 X 10" 4.9423 % 10" 6.170 x 10 2.2474 X 10°

Thereby, to find the natural frequencies, all the
cross sectional quantities may be given as the com-
posited values and be assumed the ratio 7 of Young’s
modulus of steel E; to that of concrete E. to be
equal to 7.

Table 1 shows their mean values of these quanti-
ties. The values of shape Parameters %;L; and the

values p;%,, p: 2 pi‘zﬁﬂ, ..., etc., calculated by the

practical formula (101), are shown in Table 2.
From these input data, the quantities p; _y and the
corresponding natural frequencies f; ;g have been
obtained from Eq. (107) as shown in Table 3.

In this table, the numbers in the parenthesis
represent the order of the modes. When the values
p: Con in Table 3 are compared with those of p,2,,
?:%, and p;5g in Table 2, it is clear that in the
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Table 2 Values kL, and p;,z,,,,, i %0 p,-,zﬁﬁ, oL ect,
(Nishino-miya Br.)
. 2 2 2 2 2
z kiLy Pi,vv Piww Pi,ﬂw pi,wﬂ Pi,ﬂﬁ
1 3.142 i' 8.2744x 103 3.2816x10? 2.1589 X 103 2.4455 x 103 3.8029 % 10°
2 3.927 ] 2.0357 x 104 8.0735x 103 4.6528 x 10° 5.2542x10* 7.6008 x 103
3 6.287 % 1.3815Xx10° 5.4789 X 103 9.0107 X 10° 1.1342x10¢ 2.1096 < 104
4 7.069 ;: 2.2163 x 108 8.7894 x 10* 1.3341x10¢ 1.6962 % 10* 6.9325 < 10*
Table 3 Roots p;, 12~m and natural frequencies f;, 12~m~ (c/s)
(Nishino-miya Br.)
i 2.5 20 2 it fiou Sfiom
1 2,7831x 102 3.5570 x 10 9.9469 % 108 2.6551 (1) 9.4922 (3) 15.873 (7)
2 6.9468 X 10° 7.2381x10% 2,3999 x 10* 4.1948 (2) 12.735 (5) 24.655
3 5.4204 X 10° 2.1043 x 104 1.5704 X 10° 11.717 (4 23.087 63.072
4 8.7627 x 103 6.8341 % 104 2.5878x10°% 14.898 (6) 41.606 80.972

1st, 2nd, 4th and 6th modes the vertical bending
vibration are predominant, in the 3rd and 5th the
torsional vibration, and in the 7th the horizontal
bending vibration.

Table 4 shows the amplitudes T; and &; when

&@; is assumed to be equal to unit. Accordingly,

Table 4 Amplitudes b, 1~m and T, 1~u (@;, 1~m=1).

the patterns of the vibrations can be illustrated in
Fig. 12, where the skelton of the bridge is sketched
in a straight line for the sake of clearness.

The free vibration tests were conducted by driving
The

strain and the deflection were measured after the

a 20 tons load truck at the various speed.

(Nishino-miya Br.)

i Z);, I Z7,~, ji{ Zi, o Di, 1 Ui, 1 T, |

1 —7.8013x 10" —6.7969x 1072 —3.6348%10* 9.3561 x 10~2 4.9369x 10~2 —1.2453 X101
2 —8.3772x 1074 -~7.3206 % 102 -3.5280%x10-2 6.4571x 105 2.7276 %102 —8.6217 X102

3 —4.7983x 10" —3.8069x 102 ~3.0132%x10~2 1.5291x 105 2.7093x 1073 —3.6317x10°2

4 —1.7183% 104 —3.1866 X 102 —2.9976 X102 4.3412% 106 3.1222x 102 -~2.3581%x10-2

Inside P I Inside /i\ /’\
Oulside, Outside \J/ /—!§<//
(a) 1st mode (d) 4th mode
Inside

e~y

(b) 2nd mode

V774

Inside

(c¢) 3rd mode

Inside

T AN T AN

(e) 5th mode

Inside

N A 4
(g) 7th mode

INNZAIN

Outside

&

N

(£) 6th mode

Fig. 12

Patterns of vibration.
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Fig. 13 Free vibration records (Nishinomiya bridge)

Fig. 13
illustrates the typical data recorded by an osillo-

truck had passed through the end support.

graph, in which the first mode of vibration was
observed while the other higher frequencies could
not appear appreciably.

The mean experimental value of the lowest natural

frequency (f,,Dtest was 2.60 cycle/sec.. If we
compare this frequency with theoretical one (f),1)car
=2.655 cyclefsec., the ratio between (f) 1)ca1 and
(fi.Dtest 1s equal to 102%.

By the way, if we calculate the frequencies as an
uncoupled vibration or as a straight girder bridge,
(fn)uncouplezpi,ww/z 7=2.883c/s or (fx)straight=
2.965 c/s will be obtained for the lowest mode, so
that the ratio, (f)uncoupte/(f1,Dtest and (fx)straight/
(fiDtest, 18 111% and 114% respectively. It is.
about 22~28% over-estimating the rigidities of this
bridge.

Consequently, it is impossible to explain the free
vibration of a curved girder bridge of this type
without taking into the consideration the influence
of curvature and coupled vibrations.

b) Nagara Bypass Bridge in Osaka City.

This bridge is a three span continuous curved
girder bridge having one main box girder and the
The span length
and radii of curvature are different from each other.

steel deck as shown in Fig. 14.

At one of the middle supports, the shoes are not
situated in the radial direction of the main girder.
However, it is assumed, for the sake of simplicity,
the shoes are attached in the radial direction as

shown with a dotted line in Fig. 14.

(a) general plane

824m
22

Clearwidth of Road Way 8.500m ﬁ

6% Asphalt pavement T0mm lhicf('

™y

T
~. ;
| 1 I L LI I 4
&
4.500m
po—re o ; shoes
(b) typical cross-section
Fig. 14 Detail of Nagara bridge.
Table 5 Values £,L; and 2, ..% Diww’s Piagdh e etc. (Nagara Br.)
i k;L, Diyodt Piww” Dipw’ D, i
1 3.0774 3.0535x 10° 4,9337 x 10 6.3610 % 10° 9.1097 X 10° 2.4272x 10*
2 3.4700 5.1154 % 10°% 8.2654 X 10? 2.0895 X 10° 3.0393 x10° 2.4147x 10
3 4.3829 1.2908 x 10* 2.0857 X 10° 9.0236 x 10° 1.3082x 10¢ 3.3190 x 10¢
4 6.0936 i 4.9129 % 10* 7.9381 x 10° 3.3888 x 103 4.7437 x 101 9.2430 % 10*
Table 6 Values p; 1~n® and frequencies f; 1~m (c/s) (Nagara Br.)
i pi, 1t l P, mt ?;, w? fi1 fin Sim
1 4.4564 % 10% 3.0487 x 10% 2.4847x10* 3.3598 (1) 8.7881 (4) 25.088
2 8.2387 % 10 5.1005 % 10? 2.4952x 104 4.5683 (2) 11.3660 (5) 25.148
3 2.0307 x 10° 1.2820 % 10* . 13,1458 x 10* 7.1721 (3) 18.0200 29.415
4 7.9343x10° 4.8554 x 10¢ 9.6729 x 10* 14.1770 (6) 35.0690 49.500
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The
frequencies can be obtained in the same method as

Table 1 shows the cross sectional quantities.

the above and the results are shown in Table 5 and
6.

For this bridge, in the 1st, 2nd and 3rd modes
the vertical bending vibration is predominant, but
in the 4th and 5th modes the horizontal bending
vibration. The torsional vibration will become
more predominant in the higher frequencies than the
5th, because a box girder has large torsional rigidity.

The field tests were also conducted in the same
way as a) and the frequency was 3.44c¢/s for the

first mode as shown in Fig. 15.

i |
i i
JVC\/Q AN N g
VARVANY ) I
M \‘/ N A
1.0sec
1]

Fig. 15 Free vibration records (Nagara bridge)
(deflection).

By comparing the measured values with three
theoretical values (f,1)ca1=3.360c¢/s, (funcouple=
3.530c/s and (fDstraignt=3.620c¢/s, the ratio be-
tween these theoretical values and measured ones are

98%, 103% and 105% respectively.  Since the eccen-

tric distances between the center of gravity and the
shear center are small in this bridge, the coupled
vibrations are not so appreciable. However, there
will be some danger of over-estimating the rigidities,
if we compute the frequencies about the uncoupled
vibration or about a straight girder bridge.

In the calculation of the natural frequencies, the
It

seems to be neccessary to consider the skewness of

influence of a skewed support was neglected.

the middle support for this bridge though it is much
difficult.

2. Example of Double Coupled Vibrations.

a) Jusoo Bypass Bridge in Osaka City.

This bridge is a three-span continuous curved gir-
der bridge having a multiple plate I-girder as shown
in Fig. 16.

concrete slab, but this bridge is not designed as a

The floor system consists of reinforced

composite girder. Therefore, the statical tests were
conducted to ensure the stiffness of this bridge
13.5 tons

From these tests the

by fully loading of nine dump truck
before the dynamical tests.

(1) The

siderably composite with

concrete slab was con-
@

The measured deflections were fairly coincided with

fact was that;

the steel girder.

the theoretical values calculated as composite girder
by considering the effective width of a concrete slab
and by putting n=7, except that the former was
This

composite action might be produced by means of

somewhat greater than the latter (about 10%).

the slab clamps, but it is much difficult to know
plainly the strength of a composite action. Accor-
dingly, for the geometrical moments of inertia it is
assumed to be a completely composite girder bridge.

Table 1 shows these quantities. In this case, it

(a) plan

21.23%m

[

Asplialt pavement
50nm thick

6%

o
i
2
0
g
!,
©
@
3

1,608m~1,622m!

(b) typical cross-section
Fig. 18 Detail of Jusoo bridge.
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must be noted that the eccentricity of the center of
gravity in the horizontal direction is negligible small
so that we can put S,;*=0. Consequently, the cir-
cular frequency can be determined by the practical
formula (111) on the coupled vibrations. These

results are shown in Table 7~8.

Table 7 Values &,L; and 2;,u.2, Pi58, ", etc.

(Jusoo Br.)
- I
Z k; Ly h Piywa” Dipu’ DPiywi® Diss
1 3.05 ! 1.699x10% | 3.677%10% | 3.909% 10° | 5.642%10%
2 3.53 || 3.080x10° | 3.892x 10 | 4.371x10% | 9.261x 10°
3 4.13 5.796 X 10° | 4.599x 10% | 5.787x10° | 1.682% 10*
4 5.77 ;I 2.206x10* | 1.581x10% | 2.142x10* | 6,201 X 10

Table 8 Values p;, 1~n? and frequencies £, 1~1u,---, (c/s)

(Jusoo Br.)
z I Pi,lz l Pi,l‘l2 l f;,l fin
1 1.594x 10% 5.725x10° 6.353 (1) 12.05 (3)
2 3.065x10° 9.673x10° 8.811 (2) 15.65 (5)
3 5.790 x 10° 1.801%10* 12.110 (4) 21.36 (6)
4 2.205x 104 6.657 %X 10* 26.640 (7) 41.07

Since the torsional rigidity is small in this bridge,
the Ist and 2nd modes are predominant in the verti-
cal bending vibration, while the torsional vibration
actually appears in the 3rd mode.

The vibration tests were conducted by pulsating
Fig. 17 shows the

typicaly resonance curves, which clearly shows two

the bridge with an osillator.

resonant frequencies, whose mean value is 6.10¢/s
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Fig. 17 Resonance curves.

and 7.95¢/s for 1st and 2nd mode respectively.
When the test results are compared with the theo-
retical values, the ratio between theoretical value
104% and 111% for 1st
and 2nd mode respectively. The difference of both
values seems to be caused by the assumption of the

and measured one is

complete composite girder bridge.

In the lower modes where the bending vibrations
are coupled with torsional one, the vertical bending
vibration is predominant as shown in example 1 a),
b) and 2a), and the degree of coupling in lower
modes is greater than that in higher modes. It is
evident from the equation (101) that the values
Piov’s Pivww” and p; gs° are proposional to the fourth
power of the values k;L,, whereas the values 2;,5.°,
DiPiwg’ >+, etc. are proposional to the second power
of the values k;L,. Therefore, the difference bet-
ween the values p;,00°, Pi,ww’s Pi,pp° a0d pi,wp® Pipu’s
-+, etc. increase as the values of k;L, become higher.
On the other hand, the degree of coupling decrease
in higher modes. Thus, the frequencies of coupled
vibrations are always smaller than that of uncoupled
in the lowest mode, that is to say, the rigidities of
a curved girder bridge always tend to decrease.

This tendency can also be explained on the basis
of the following analysis.  If the statical downward
deflection due to a unit force is denoted by the
symbol w;;, we know that the natural frequency in
the fundamental mode can approximately be cal-
culated by Rayleigh-Ritz’s method as follows.

— g
flv[ 2z War

Then, the deflection of a curved gider bridge is
usually much greater than that of a straight girder
bridge having the identical span length and cross
sectional dimensions.  Therefore, this is the main
reason why the lowest frequency decrease in coupled
vibrations of curved girder bridge.

b) Nakano-Shima S-shaped Bridge on Hanshin

Expess-Way.

The Nakano-Shima Bridge was planned as a three-
span continuous S-shaped curved girder bridge.
Authors studied it to clarify the dynamical behaivours
of such a paticular bridge'™®. So, the dynamical
tests were conducted for a model girder before
designing this bridge. The model
fabricated on the scale of 1: 20 under the considera-

bridge was

tion of the dimensional anlysis.

Fig. 18 shows the plane figure and the typical
cross-section, where the radius of curvature of both
side span is equal and has opposite directions to

each other. The center span has also curvature,
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Fig. 18 Detail of model girder bridge.

but it may be regarded as a straight girder bridge
having bisymmetrical cross-section because its cur-
vature is much large.

Now, the bridge of this type can be considered to
have the coupled vibrations of horizontal bending

s
Oy
(b) plane (mm)
Amp. G
1.0
Ist.
]
0.5
2nd. 3rd.
0 P —. o

and twisting. The bending vibration in the vertical
direction can be treated independently as previously
described.

Table 9 shows the values p;,.0°, Piww’ and pi ps’
estimated from the practical formula (101). From
these values, the natural frequencies can be obtained

by Eq. (120) as shown in Table 10.

Table 9 Values k;L; and 2,,..°, Piww’s Piyps-
(Nakano-shima Br.)

i k;Ly Piww’ Dot Piss

1 2,91 2.229 X 104 6.537 X 10% 3.984 X 10%
2 3.51 4,703 x10¢ 1.379x 10% 5.657 X 10°
3 3.95 7.679 X 10* 2.252x 108 5.760% 10°
4 5.72 3.411x 108 1.001x 107 1.853x 108

Table 10 Values p; n~m® and frequencies f; 1~m. (c¢/s)
(Nakano-shima Br.)

i Pi,l?l2 l 1’,‘,!![2 | f,',l i1 f;,m
1 3.8254 X105 7.0059 X108 || 23.76 (1) | 98.42 (5) 133.2
2 5.5567X10% | 1.4481 X105 |( 34.50 (2) | 118.6 191.5
3 5.7057 X105 | 2.3399X10%] 44.09 (3) 120.2 243.5
4 1.8406xX10511.0363%107 [ 92.94 (4) | 491.9 512.3

It can be seen that the modes from the 1st to the
4th are bending vibration in the vertical direction.
The coupled modes of bending vibration in the
horizontal direction and torsional one are produced
in the 5th mode for the first time.

The dynamical tests were conducted by pulsating
the model girder by means of an electro-magnetic
osillator. The measured data got by accelometers
are shown in Fig. 19. The resonant frequencies

are summarized together with their theoretical values
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05 & Srd
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/8

(d) pulsatinig point S-22b
Fig. 19 Typical resonance curves.
(Nakano-shima Bridge)

in Table 11.
corresponding to these frequencies.

From the above data, it is clear that the theoreti-
cal values well coincide with the measured ones in
the 1st, 2nd and 3rd modes. The deviation in the

Fig. 20 shows the observed modes
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Table 11 Comparison of experimental values with
theoretical ones. (c/s)
(Nakano-shima Br.)

Mode Experimental | Theoretical Theoretical
values as

order values values straight bridge
1st 23 23.76 24.11

2nd 33 34.50 35.08

3rd 44 44.09 44.08

4th 85 92.94 93.17

5th 95 98.42 96.42
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Fig. 20 Measured modes.
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4th and 5th modes might be caused by the exceeding
complexity of the coupled vibrations, since the 4th
Besi-

des, the curvature in the center span of existing

and 5th modes have almost equal frequencies.

model has more or less effect on the higher vibra-
The right column of Table 11 shows the
frequencies computed with the assumption as a strai-

tions.

ght girder bridge.

1V. CONCLUSION.

1. The practical equations for determining stress
resultants and displacements of a curved girder
bridge subjected to various kinds of statical forces

have been derived.

2. From these equations the fundamental equations
for the free vibration of a curved girder bridge
have been presented.

3. The approximate solution for the coupled vibra-
tions of three modes were found by using Galer-
kin’s method.

4. The natural frequencies are closely depend on
the geometrical properties of a curved girder
bridge as well as its materials.

5. The frequency equation for a curved girder
bridge classified into,

a) coupled vibrations of three modes,
b) coupled vibrations of two modes,
¢) un-coupled vibration.

6. The practical formulae for the three cases have
been derived.

7. The above formulae have been verified by the
field experimental studies and model test.

8. The lowest frequency of a curved girder bridge
is always lower than the value estimated as an
uncoupled vibration or as a straight girder birdge.
The rigidities of a curved girder bridge are
apparently much smaller than those of a straight
girder bridge having identical span length and
cross-section.

9. It may be concluded that in a S-shaped curved
girder bridge like this example, the vertical ben-
ding vibration is independent, while the horizontal
berding vibration coupled with torsional vibration,
which has also been verified by the experimental
studies.

10. In a curved girder bridge having a concrete
deck, though there are a few point remaining to
be solved concerning with the estimation of sti-
finess, it will be sufficient reasonable to calculate
its frequencies as a composite girder bridge.
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APPENDIX
{rkily “ Vir ‘ Xisr Civr Pirr Hivy iy Visy 6irr

0.1 3.3332x107 6.6668 X 10~! 3.3335x 10! 2.0000 x 10! 1.4842x10°% 3.1468 x 10~ 8.9455 x 10—+ 1.5450x10-3
0.2 3.3334 x 10! 6.6667 107" 3.3337x107 1.0000 X 10! 1.3046 X 1075 2.7057 X 10~ 3.5560 X102 6.2222%x10-%
0.3 3.3337x 10! 6.6667 X 10! 3.3350 X 10! 6.6677 6.8303x107° 1.3327x10°* 8.0014 X 10-3 1.4002x 10-2
0.4 3.3344 x 10~ 6.6687 X 10~ 3.3386x 10"t 5.0025 2.1669 x 10~ 4.2044 x 10~* 1.4229 X102 2.4903 X10-%
0.5 3.3359 x 107! 6.6693 x 1071 3.3462%x 1071 4.0049 5.2974 X 10~ 1.0264 %102 2.2249 X102 3.8941 x 10-%
0.6 3.3387x10™! 6.6722x10°! 3.3600 x 10! 3.3417 1.1001 X 10-3 2.1313x10°3 3.2079x10~2 5.6157 X 10~
0.7 3.3432x 10! 6.6769 <101 3.3828 x 10! 2.8705 2.0425 x 1072 3.9579 X102 4.3756 X 1072 7.6619x1072
0.8 3.3502x10* 6.6841 %1071 3.4180 x10-! 2.5200 3.4964 X 103 6.7759 %102 5.7336 X10-2 1.0044 %10t
0.9 3.3604 x 10! 6.6946 x 10! 3.4695 %101 2.2508 5.6286 x10% 1.0910x10-2 7.2909%x 102 1.2780x 10!
1.0 3.3748 x 10! 6.7094 X 107! 3.5423 X 10! 2.0393 8.6393 X103 1.6749x10-2 9.0608 x 10-2 1.5897 10!
1.1 3.3943x10°! 6.7296 X 10! 3.6419x 10! 1.8708 1.2770x 102 2.4763 X107 1.1062x 10! 1.9431 x10-
1.2 3.4202x 10~ 6.7563x 101 3.7755 10! 1.7354 1.8314 1072 3.5528 x 102 1.3322x10°! 2.3436 x 10!
1.3 3.4540x 10! 6.7912x10"? 3.9516 X101 1.6266 2.5637x10-2 4.9758 x10-2 1.5877 107! 2.7985x 10
1.4 3.4974x 10! 6.8358 x 10! 4.1810x 101 1.5399 3.5203 X 10~2 6.8363x10-2 1.8776 x10-! 3.3177x10-¢
1.8 3.5525 x10-! 6.8925 x 107! 4.4776 X101 1.4722 4.7607 x10-2 9.2518x10-2 2.2089 x 10t 3.9149 x 10t
1.6 3.6217 10! 6.9638 x 107! 4.8595 %1071 1.4214 6.3639 X 10~2 1.2378 x10! 2.5910% 10! 4.6086x 10"
1.7 3.7084 x 10! 7.0528X10° 5.3510x 10 1.3864 8.4365x 102 1.6426 X101 3.0366 x 10! 5.4246 x 102
1.8 3.8165 %101 7.1638 x10~! 5.9855 X 10! 1.3667 1.1126 x10! 2.1690x10~! 3.5640x 10! 6.3938 X102
1.9 3.9514 x 107! 7.3021 10~ 6.8101 x 10! 1.3627 1.4644 x 101 2.8587 x 10~ 4.1987 %101 7.5826 x 101
2.0 4.1201 x 10! 7.4749 %107 7.8932x 10! 1.3755 1.9297 x 16! 3.7730x 10! 4.9782x10 9.0504 x 104
2.1 4.3325 10~ 7.6919 X 10~ 9.3374x10°* 1.4071 2.5552x10"! 5.0049 < 10-* 5.9584 x 10! 1.0914

2.2 4.6023 x 10! 7.9671x10! 1.1302 1.4612 3.4139%x 10! 6.7002 x 10-! 7.2259x10°! 1.3346

2.3 4.9498 10! 8.3208 X107 1.4048 1.5436 4.6260 %1071 9.0986 x 10-! 8.9210x 107! 1.6626

2.4 5.4064 X 107! 8.7845x 10! 1.8022 1.6634 6.3993x10-! 1.2615 1.1283 2.1233

2.5 6.0226 X 10! 9.4089x 10! 2.4043 1.8362 9.1189 x 10~ 1.8020 1.4747 2.8037

2.6 6.8865x 10! 1.0282 3.3755 2.0892 1.3563 2.6869 2.0179 3.8770

2.7 8.1660 x 10-* 1.1572 5.0859 2.4749 2.1497 4.2693 2.9514 5.7300

2.8 1.0225 1.3643 8.5194 3.1073 3.7660 7.4969 4.7855 9.3832

2.9 1.4032 1.7464 1.7074 x 10 4.2901 7.8558 1.5671 x10-! 9.2675 1.8331 x10*
3.0 2.3288 2.6734 4.9812x 10t 7.1860 2.3765x 107 4.7483 X107 2.6114 x 10! 5.2006 x 10
3.1 7.7288 8.0751 5.7797 X 10? 2.4140x 10! 2.8515 X 102 5.,7025 % 102 2.9291 X 10? 5.8558 X 10°
3.2 | —5.3789 ~5.0307 2.9305%10° | —1.7049 X 10 1.4925 X 102 2.9843 % 10? 1.4391 % 10? 2.8756 % 102
3.3 | —1.9434 —1.5931 3.9758 X 10* ~6.2655 2.0887 x 108 4.1701 x 10} 1.8996 % 10* 3.7711 x 10*
3.4 | —1.1706 —8.1797x 10! 1.4872x 101 ~3.8464 8.0636 1.6043 x 10* 6.9553 1.3607 X 10*
3.5 | —8.3178x16"! | —4.7651x10°! 7.6710 2.7903 4.2399 8.5028 3.5408 6.7527

3.6 | ~6.4291x10"! | —2.8472x10™" 4.6342 -2.2051 2.6942 5.2771 2.1343 3.9121

3.7 —5.2347x10"' | —1.6202%10"! 3.0706 -1.8379 1.8609 3.5941 1.4307 2.4748

3.8 | —4.4188x107* | —7.6771 X102 2.1576 —1.5896 1.3730 2.5995 1.0348 1.6497

3.9 | —3.8320%10"" | —1.4019x10? 1.5752 —1.4135 1.0632 1.9584 7.9422 1.1317

4.0 | —3.3950<10 3.4245 x 1072 1.1779 ~1.2847 8.5519 x 10! 1.5174 6.4061 x 10~* 7.8339 x 107!
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Lokil, M Yiir %y Civr Pisr Hisr ’ Eivr Visr 6ivr
4.1 | —3.0615x10! 7.2700%10-2 8.9166 10t | —1.1889 7.0984 10! 1.1978 5.3960x 10! 5.3533x 107!
4.2 | —2.8032x10"? 1.0427x 101 6.7539X10-! | —1.1173 6.0562x 107! 9.5571 % 10! 4.7259 X107 3.4934x 1077
4.3 | —2.6015x10* 1.3091x10-! 5.0466 X107 | —1.0644 5.2987 X 10! 7.6481 x10-* 4.2887 x 107! 2.0283 x 107!
4.4 | —2.4441%1071 1.5394 X107 3.6396 X10"* | —1.0263 4.7488x 107! 6.0837 10! 4.0208 < 10! 8.1573x 10!
4.5 | —2.3227x10* 1.7436 X101 2.4282x10°1 | —1.0008 4.3583x107! | 4.7509%x 10! 3.8840% 107! 2.4020 x 107t
4.6 | —2.2314x107? 1.9290x 107! 1.3369%x10-! | —9.8624 %10 4.0972% 10! : 3.5683x 10t 3.8559 %101 1.2093 %101
4.7 | —2.1665x 107! 2.1017x 107 3.0586 102 | ~9.8188x107! 3.9483X10 |  2.4794x 107! 3.9252 %107 | —2.1472x107*
4.8 | —2.1256x 10! 2.2666x 107 | —7.1711 X102 | —9.8739% 10! 3.9039 x 107! 1.4085 %101 4.0896% 10" | —3.1034 X107
4.9 | —2.1077x10™* 2.4285%X10-1 | —1.7834x10"1 | —1.0030 3.9649 x 10! 3.2428 X102 4.3545x 101 | —4.1282%x 10!
5.0 | —2.1126x10! 2,5918x10~1 | —2.9501 10! | —1.2094 4.1407x10°! | ~8.3744 x 10-2 4.7342%10"! | —5,2783x 10!
5.1 | —2,1418x10°* 2.7614x10"! | —4.2878x10"! | —1.0679 4.4519 %101 | —2.1460% 101 5.2539 X10"* | —6.6257 x 10!
5.2 | —2.1980x10"! 2,9430x 10! | --5.8925x1071 | —1.1209 4.9341x107! | —3.6945 %101 5.9552x10°1 | —8.2687 10!
5.3 | —2.2859x10 3.1437x10°! | —7.9036x 10! | —1.1916 5.6461x107! | —5.6177 x 10~ 6.9039x10-! | -1.0352
5.4 | —2.4131x107 3.3729x10°! | —1.0538 —1.2850 6.6860x 10" | —8.1250x 107! 8.2078%10"* | —1.3098
5.6 | —2.5919%x10~! 3.6445% 1071 | —1.4155 ~1.4092 8.2219x10°! | —1,1563 1.0049 —1.6880
5.6 | —2.8420x107? 3.9797x10"! | —1,9388 -1.5767 1.0557 -~ 1.6546 1.2751 -2.2352
5.7 | —3.1976x10! 4.4137x107' | ~2.7458 ~1.8092 1.4281 —2.4261 1.6940 —3.0766
5.8 | —3.7214x 10! 5.0103X10°! | —4.0963 —2.1463 2.0658 -8.7242 2.3945 ~4.4786
5.9 | —4.5426x10"! 5.8995xX10! | —6.6296 —2.6692 3.2820 —6.1753 3.7024 —7.0930
6.0 | —5.9731x10 7.3939x 107! | —1,2293 X 10! -3.5739 6.0345 —1.1696 % 10! 6.6073 —1.2899 x 10t
6.1 | —9.0067 x10-1 1.0488 —2.9627 X 10! -5.4851 1.4543 X 10 —2.8726 x 10! 1.5428 X 10" ' ~-3.0535 X 10
6.2 | —1.9418 2.0957 —1.4434 X 10? —1.2081 X 10 7.1375% 10 ~1.4240%10° 7.3310x 10! | -1.4629 x 102
6.3 9.4399 -9,2804 —3.5368 x10° 5.9479 % 10 1.7733%10° —3.5462x10° 1.7638 X 10° ~3.52713 x 10°
6.4 1.3401 —1.1752 —~7.3113 %10 8.5834 3.7396 x 10* —~7.4453 x 10" 3.6065 x 10 —7.1778 X 10!
6.5 7.1470x107! | —5.4457x10"! | —2.1100x 10t 4.6516 1.1077 X 10" —2.1815 X 10 1.0378 X 10 -2.0391 x 10*
6.6 4.8593%x10"! | —3.1062%x10"! | —9.7876 3.2126 5.3069 —1.0274 X 10* 4.8447 —9.3063
6.7 3.6830%107! | ~1.8785% 10! | —5.5763 2.4725 3.1445 —~5.9446 2.8074 —5.2122
6.8 2,9729X10°* | —1.1169x 10! | —3.5587 2.0261 2.1038 —3.8560 1.8450 —3.2652
6.9 2.5026 X10"1 | —5.9451X10°t | —2,.4360 1.7308 1.5241 -2.6862 1.3197 —2.1891
7.0 2.1718x1071 | —2.1073%x 107! | —1.7448 1.5239 1.1689 —1.9620 1.0050 -1.5308
7.1 1.9298 < 10-2 8.5831x107% | —1.2866 1.3735 9.3663x10°" | ~1.4795 8.0437 107! | —1.0964
7.2 1.7479 %107 3.2430x 102 | —9,6428 107! 1.2615 7.7755x107! | —1.1391 6.7109 10~ | —7.9207x 10~!
7.3 1.6089 <10~ 5.2247x10°2 | —7.2604%x 10! 1.1772 6.6521 10! | —8.8693x10~! 5.8047x10"! | —5.6748 x 10!
7.4 1.5020x10~! 6.9193 X102 | ~5.4175%x10™! 1,1139 5.8446 X107 | —6.9195x 10! 5.1852x10' | —3.9367 X 10!
7.5 1.4260x 10! 8.4060%10-2 | —3.9287x 10! 1.0672 5.2652X 1071 | —5.3487 x 10! 4.7698x10"! | —2.5279x10-!
7.6 1.3581x1,~! 9.7423x10-2 | —2,6719 X 10! 1.0341 4.8498X10-' | —4.0300%x10-! 4.5083x10°! | —1.3312%x 10!
7.7 1.3131x 107 1.0971x10°! | —1.5616 x 10! 1.0129 4.5719x10~1 | —2,8747 10! 4.3703 10! | —2.6432x10-2
7.8 1.2829 %101 1.2128X 107! | —5,.3294 X102 1.0023 4.4082x10- | —1.8158 x10-! 4.3389 10! 7.3565% 102
7.9 1.2662%x 10t 1.3241x10-* | —4.6841x10-? 1.0018 4.3485% 1071 | —7.9782x10-1 4.4068x 101 1.7217 x 10!
8.0 1.2626 x 10~ 1.4338 x 10! 1.4932x 107! 1.0114 4.3912x 10t 2.3057 10! 4.5751 %107t 2.7440x 10!
8.1 1.2721 x 107! 1.5446 10! 2.5951 107! 1.0317 4.5430x10! 1.3229x10"! 4.8530x10-! 3.8566 x 10~
8.2 | 1.2057x10-' | 1.6502x10-1 | 3.8379x10-1 | 1.0636 4.8203x10° |  2.5422x10-" | 5.2600x10~ | 5.1239x10~!
8.3 1.3349x 10! 1.7809 10! 5.3050 %10~ 1.1089 5.2527 X101 3.9701 x 101 5.8288x 107! 6.6311 x 10-1
8.4 1.3925%x 10! 1.9139x10! 7.1147x10°1 1.1706 5.8892x10 5.7222x10°! 6.6126 107! 8.4993 x 10!
8.5 1.4729 107! 2.0635x 10! 9.4462x10"! 1.2528 6.8104 10! 7.9733 X101 7.6974 <107 1.0912
8.6 1.5829x 107! 2.2374x10°! 1.2588 1.3620 8.1519x10-* 1.1005 9.2265x 10! 1.4164
8.7 | 1.7834x10-1 | 2.4474x10 | 1.7036 1.5087 1.0152 1.5303 1.1450 1.8764
8.8 | 1l.o42ax10- | 2.7121x107 | 2.3710 1.7009 1.3258 2.1768 1.4834 2.5647
8.9 | 22423107 | 3.0644x10-! | 3.4479 1.9926 1.8386 3.2237 2.0327 3.6717
9.0 | 2.6058x10-1 | 3.5676x10-! | 5.3648 2.4267 2.7655 5.0952 3.0112 5.6340
9.1 3.4435x10! 4.3626 <10 9.3077 3.1341 4.6923 8.9633 5.0187 9.6516
9.2 4.8764 X107 5.8409 x 107! 1.9623 X 10* 4.4867 9.7724 1.9135 1.0248 x 10 2.0110% 10!
9.3 8.6397 x 10! 9.6479 x10! 6.4060 < 10* 8.0352 3.1799 x 10 6.3196 x 10! 3.2656 x 10 6.4924 % 10¢
9.4 | 4.2038 4.3989 1.6286x10° | 4.0363x10' | 8.1236x10° | 1.6243%10° | 8.1665x10° | 1.6329x 100
9.5 | —1.4007 —1.2915 1.7656 X 102 -1.3306 <10 8.9178 x 101 1.7796 x 10? 8.7781 X 10! 1.7616 x 102
9.6 | —5.9755x10-! | —4.8422x10-' | 3.2402x10! | —5.7362 1.6695x10" | 3.3000x10° | 1.6107x10 | 3.18045x1("
9.7 | —3.7936%107 | —2.6198%10"1 | 1.3081x10' | —3.6796 6.9011 1.3410x 10! 6.5361 1.2651 10"
9.8 | —2.7845x10! | ~1.5702x10- | 6.9277 ~2.7286 3.8013 7.2062 3.5423 6.6491
9.9 | —2.2078x10"! | —9.5297 x 10! 4.2477 -2.1855 2.4361 4.4685 2.2398 4.0268
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