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A THEORETICAL INVESTIGATION ON AERODYNAMIC STABILITY
OF LONG-SPANNED SUSPENSION BRIDGE

By Ichiro Konishi*, Naruhito Shiraishi*, Hidehiko Utsunomiya**

Abstract

This paper presents a theoretical consideration
on the {lutter wind velocity taking into an
account the various structural parameters on
the base of the theory developed by F. Bleich,
which is originally concerned with the two-
dimensional air stream. We investigate here,
to some extent, a few fundamental cases of
the three dimensional wind velocity variations
in the horizontal direction and its influence on
the critical wind speed.  Numerical illustra-
tions are proceeded for the 1st plan of the
proposed Akashi Straits Bridge and compared
with the results by A. Selberg’s empirical for-
mula for corresponding torsional and deflectional

characteristics of the proposed suspension bridge.
Preface

In recent years, the construction of long-
spanned suspension bridges is considered to
connect the Honshu Island with the Shikoku
Island from the national demand for industrial
and regional developments in Japan. In con-
nection with this plan, it is easily understood
that the structural investigation on possibility
of so large scale bridges is closely related with
the problems of the aerodynamic instability and
wind resistant behavior of a suspension bridge.

In spite of numbers of experiments and
theoretical investigations about these themes, it
remains still. uncertain to be solved with satis-
factory accuracy because of mathematical com-
plexity in the fundamental equations and of
mechanical difficulty in determination of aerody-
namic forces acting on the structural members
of suspension bridge.

In this paper the behavior and the instability
of a suspension bridge are considered three-
dimensionally by taking an account the steady
and partially distributed wind in spanwise direc-
tion. The theoretical investigations thus fo-
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llows that the aerodynamic characteristics of
such flexible structures as suspension bridge are
characterized not only by mechanical factors as
the circular frequencies of deflectional or tor-
sional modes of vibrations but by the geome-
trical factors of the cross sectional shape of
stiffening floor.

The numerical method developed here results
in fairly good agreement with the empirical
formula by Selberg for the critical velocity of
a suspension bridge.

1. Fundamental Equation for Flutter
Speed.

The unsteady aerodynamic force acting on a
thin airfoil in unsteady motion in a two-di-
mensional incompressible fluid was obtained by
Wagner, Kiisser, von Karman, Shears, etc?.
For the structural point of suspension bridge,
F. Bleich® applied for the first time the thin
airfoil theory for determination of the critical
wind velocity for flutter phenomenon where
the lift and the torque moment are written as
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where s=2zpb, fi=Ck), f,=1+C(k),

Ja=1=C(k)
and
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In eq’s (2), % is termed as the reduced

velocity to be equal to w &/V and C(£) is called
the Theodorsen’s function in which H(k) are
the Hankel functions.

In eq. (1) the center of gyration is agreed
with the mid-chord.
of a suspension bridge is given as a coupled

The aerodynamic response

vibration because of inclusion of both vertical
and torsional modes in lift and torque moment.
The virtual work done by virtual displace-

ments is
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where g, =e¢f @,
span length of wind loading, hence, the diffe-
rential equations of motion is given as
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where @, : normalized vertical deflection mode
@, : normalized torsional mode
d,, o, : parameters to indicate the region
where the wind acts
®, : natural frequency of vertical vibra-
tion
w, : natural frequency of torsional vi-
bration
Introducing the reduced frequency k= (%
and the flutter frequency w, we have
g, =ue™, Qo= ity e (6)

and adding the abbreviation
dZ
J @j@jdx = D,‘j
a

above equations (4), (5) are written in more
convenient form as,
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The frequency equation derived from eq’s
(7) and (8) comprises both the real part and
imaginary part containing two indeterminate

parameters, namely the flutter frequency and
the critical wind velocity. In equating the
real part and imaginary part of the frequency
equation to zero respectively, two equations
with real coefficients are obtained as follows,
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These two equations are transcendental equa-
tions about parameters £ and o, which solutions
may not be obtained in the closed form by
means of the ordinary algebraic calculations.
In above equations S, b, » and natural freque-
ncies w,?, ,* can be calculated from given design
factors. Consequently to solve these equations
the values for f; in Table 1 are used interacti-
vely corresponding to any k. Substituting the
values of f; for a certain %, the remaining
parameter o is determined from one of the
equations. Using the obtained parameter o
for the second equation, the parameters are
examined whether or not these satisfy both
expressions consistently, and the critical velocity

V is obtained from the relation k=wb/V.
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Table 1
k Srr ~fi ‘ Sor ‘ ~ S ‘ Sor | Sai
0.00 | 1.0000 | 0.0000] 2.0000 | 0.0000 | 0.0000 0.0000
0.02 | 0.9637 | 0.0752| 1.9637 | 0.0752 | 0.0367 0.0752
0.04 | 0.9267 | 0.1160 | 1.9267 | 0.1160 | 0.0733 0.1160
0.06 | 0.8920 | 0.1426 | 1.8920 | 0.1426 | 0.1080 0.1426
0.08 | 0.8604 | 0.1604 { 1.8604 | 0.1604 | 0.1395 0.1604
0.10 | 0.8319 | 0.1723 | 1.8319 | 0.1723 | 0.1681 0.1723
0.12 | 0.8063 | 0.1801 | 1.8063 | 0.1801 | 0.1937 0.1801
6.14 |0.7834 [ 0.1849 | 1.7834 | 0.1849 | 0.2166 0.1849
0.16 | 0.7628 | 0.1876 | 1.7628 | 0.1876 | 0.2372 0.1876
0.18 | 0.7443 | 0.1887 | 1.7443 | 0.1887 | 0.2557 0.1887
0.20 |0.7276 | 0.1886 | 1.7276 | 0.1886 | 0.2724 0.1886
0.22 |0.7125 | 0.1877 | 1.7125 | 0.1877 | 0.2875 0.1877
0.24 |0.6989 | 0.1862 | 1.6989 | 0.1862 | 0.3011 0.1862
0.26 | 0.6865 | 0.1842 | 1.6865 | 0.1842 | 0.3135 0.1842
0.28 | 0.6753 | 0.1819 | 1.6753 | 0.1819 | 0.3247 0.1819
0.30 | 0.6650 | 0.1793 | 1.6650 | 0.1793 | 0.3350 0.1793
0.32 | 0.6556 | 0.1766 [ 1.6556 0.1766 0.3444 0.1766
0.34 | 0.6469 | 0.1738 { 1.6469 | 0.1738 | 0.3531 0.1738
0.36 [ 0.6390 | 0.1709 | 1.6390 | 0.1709 | 0.3610 0.1709
0.38 |0.6317 {0.1679 | 1.6317 | 0.1679 | 0.3683 0.1679
0.40 | 0.6250 | 0.1650 { 1.6250 | 0.1650 | 0.3750 0.1650
0.42 | 0.6187 | 0.1621 | 1.6187 | 0.1621 | 0.3813 0.1621
0.44 | 0.6130 | 0.1592 | 1.6130 | 0.1592 | 0.3870 0.1592
0.46 | 0.6076 { 0.1563 | 1.6076 | 0.1563 | 0.3924 0.1563
0.48 | 0.6026 | 0.1535 | 1.6026 | 0.1535 | 0.3974 0.1535
0.50 | 0.5979 | 0.1507 { 1.5979 | 0.1507 | 0.4021 0.1507
0.55 | 0.5866 | 0.1444 | 1.5866 | 0.1444 | 0.4134 0.1444
0.60 | 0.5788 | 0.1378 | 1.5788 | 0.1378 | 0.4212 0.1378
0.65 | 0.5713 [ 0.1319 | 1.5713 | 0.1319 | 0.4287 0.1319
0.70 [ 0.5648 | 0.1264 | 1.5648 | 0.1264 | 0.4352 0.1264
0.75 1 0.559110.1213 ] 1.5591 | 0.1213 | 0.4409 0.1213
0.80 | 0.5541 | 0.1165 | 1.5541 | 0.1165 | 0.4459 0.1165
0.85 | 0.5498 | 0.1121 | 1.5498 | 5.1121 | 0.4502 0.1121
0.90 | 0.5459 | 0.1078 | 1.5459 | 0.1078 | 0.4541 0.1078
0.95 | 0.5425 | 0.1039 [ 1.5425 | 0.1039 | 0.4575 0.1039
1.00 |0.5394 | 0.1003 | 1.5394 | 0.1003 | 0.4606 0.1003

It should be noticed that the external forces
of lift and torque moments are derived for the
two dimensional flow which means correspond
to the infinite Aspect Ratio, AR =00, while the
theoretical consideration here are made three
dimensionally taking an account of spanwise
variation of wind velocity in eq’s (4) and (5).
The smaller the Aspect Ratio (usually less than
5), the more different the two-dimensional lift-
curve slope from the actual ones. However
for so long structure as a suspension bridge,
the aspect ratio varies from 10 to 40 and the
correction may remain so small as to be negli-
gible?.,

2. Numerical illustrations.

Structural characteristics relating the aerody-
namic stability are governed by various factors
such as the shape of the floor system, the width-
depth ratio b/d, existence of slots, etc.
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Fig. 2 The Real and Imagenary Parts of Theodorsen’s
Function F(%) and G(%).

In this paragraph, we take notice of #/d and
consider the variation of flutter velocity with
respect to this geometric parameter (b/d).

Dimensions used in this calculation are as
follows :

Span length

[=1300 m
Cable sag
f=108m
Dead load of floor
W,=40.678 t/m
Weight of cables
W,.=2x9.661t/m
Horizontal component of the cable tension
due to dead load
Hy,=5.841x 10" t/cable
Cross-sectional area of cable
A,=1.232 m?/cable
Elastic modulus
E=FE,=2.1x10" t/m®
Cross-sectional area of Upper chord
456 cm®
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Table 2

Case | d 25 28/d I, I,
1 23.717 23.717 1.00 12.656 12.656
2 18.605 27.908 1.50 7.788 17.524
3 16.641 29,122 1.75 6.231 19.082
4 15,000 30.000 2.60 5.000 20.250
5 13.622 30.650 2.25 4.175 21.137
6 12,457 31.142 2.50 3.491 21.821
7 10.607 31.820 3.00 2.531 22.781
8 9.215 32.251 3.50 1.910 23.403
9 8.135 32.540 4.00 1.489 23.823

Cross-sectional area of lower chord
395 cm?

The b/d values are exchanged in ten cases,
maintaining the mass radius of gyration to be
constant as 7=16.830 m (refer to the Table 2).

The natural frequencies of vertical and tor-
sional vibration ,’, ,” and the corresponding
mode functions for free vibrations are obtained
on the basis of the method developed by F.
Bleich® which is described as follows.

Setting up the deflectional mode and torsio-
nal mode as

. TX . 3=z
n=a, smT +a, sm—-—l—
for the main span,
. Tx .
7, =4a,sin—— for the side span,
1
. Tx . 3zx
¢=>0, sin = +b, sm—-l—
for the main span,
. Tx .
¢, =k, sin—— for the side span.
7 P
1

The frequency equation of vertical vibration
is obtained by eliminating «,, &, and a, from
the following expression,
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The frequency equation of torsional vibra-
tion is similarly obtained from
(§w2~A—R)a,—K<al+% +2ad,>=0
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In the case of suspension bridge without
side spans, coefficients relating the side span
such as C, &, 8, r and @, vanish and above
two equations are thus reduced to more simple
form as follows.

For vertical vibration

<A—ﬁ>al—ﬁa3=0 1
p 3p

k* k*
—E}—al+(3-'§?>a3~0 f
For torsional vibration
S"coz—A—R)al—K<a,+%>=0

(Sw2—81/1—9R)a3——%—<al+%3~>=0

the derived values are shown in Table 3.

To examine the effect of distributed wind
acting on the suspension bridge, we consider
the four types of load conditions indicated in
Fig. 3 as fully loaded, 80%-loaded, 60%-loaded

Table 3

. . Tx . 3zx
Vertical mode sin —— —Asin T

. .o . 3=
Torsional mode Sln%_B sin Lz

Case 2b/d ®y A W, B
1 1.00 1.0123 1.3915 1.2287 0.0979
2 1.50 0.9808 1.5009 1.3571 0.1192
3 1.75 0.9702 1.5358 1.3763 0.1337
4 2.00 0.9616 1.5652 1.3833 0.1529
5 2.25 0.9558 1.5855 1.3797 0.1757
6 2.50 0.9509 1.6013 1.3722 0.2041
7 3.00 0.9439 1.6234 1.3461 0.2781
8 3.50 0.9394 1.6393 1.3125 0.3786
9 4.00 0.9362 1.6478 1.2726 0.5004
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(c) 60% loaded

(d) 50% loaded

Fig. 3 Load Condition.
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Fig. 4.1 Case 4, Fully Loaded.
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Fig. 4.2 Case 4, 80% Loaded.
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Fig. 4.3 Case 4, 60% Loaded.

and 50%-loaded cases.

As the result of calculations the final solu-
tions for two parameters £ and »* are obtained
graphically as the interesting points of two
k—w® curves corresponding to equations (9)
and (10) respectively (Fig. 4).

wl
2b/d=2.0
D,,=0.8053
D,,=0.7762
1100 D,,=0.9038
1.00
0 05 k
Fig. 4.4 Case 4, 50% Loaded.
@?
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Dn=10
D,,=0.7892
D;,=1.0
05 k
Fig. 4.5 Case 8, Fully Loaded.
(‘)2
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D,,=0.7834
1.029 D,,=0.9950
1.00
/
0 0.12 0.5 k
Fig. 4.6 Case 8. 80% Loaded
QZ
2b/d=3.5
D,,=0.8249
D,,=0.809
1.035 D,,=0.9967
1.00;
L
0 0.120 0.5 k

Fig. 4.7 Case 8. 60% Loaded.
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Fig- 4.8 Came & 309 Loaded.

3. Consideration.

From the curves indicated in Fig. 4, the
spectrum given by eq (9 hardly varies for
vartous vilues of &fd to be an almest steaighe:
line except the region where & 35 less tham 0.3,
while the spectrum given by eq. (10} waries
ﬂ.‘.u'l.ﬁpin:inu&l'_t,' dl:punding om the parameter k,

By the order estimation, the eq. (93 s reduced
to a more siceple Torm, because the mass density
of air p, which is equal to 0, 126 = 107" ton-gec®/
m*, is =0 small that S-% Is negligible in
the peglon where B i3 comparatively lorge
Thus eq. (%) becemes approximately as,

' — "o, " ety
= [ — url"_'l {a® —n.l."] =i
that is o sy, eq. {99 indicates that d-w® curves
become  asymptotically parallel to the k-axis in
the spectrum dingram, for which the two corres-
panding frequency porameters approsch to the
frequencies of vertical and torsional ibrations,
rupecl.iﬂl'_lr, for the |I.rg-|: values of B

Two kitds of curves corresponding o eq's
{93 and (100 seem 1o inbersect al several pomts,
with which the parameter & and squared Autrer
frequency «f are determined (Table 43,

Inspecting the variation of futter speed aceerd-
ing to various values of the structural factor 2
&/d, the critical welocity increnses remarknbly
until the ratio 2 &/d reaches 1o 3.0

Sa far os the structura] dimensions wsed here
19 concerned i1 moay be said that the geometric
shape Bctor 20/d shoold be chosen to excesd
1.5, sinee, I our caleulation the critical weloeity
of 28d between 1.5 and 2.5 decreases  reemar-
kably depending on the losded length (Fig. 51.
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* The Effect of Variation of Wind loading

Length in the spanwise direction (Fig. 6).

The particular attention should be paied on
the lowest value of kinds of flutter velocities
which takes a more important role in the struc-
tural point of views.

The acting length of wind on a suspension
bridge has not so large effect on the flutter
speed.  Especially for the large ratio of b/d,
that is, the flat floor, the difference of flutter
speeds between the case of fully loaded and the
case of half loaded along the spanwise is less
than 7%. Moreover it-should be noted that
there are some cases in which the flutter speeds
under fully loaded condition do not reach to
the minimum. This seems to be an effect of
higher order terms of the free vibrational
modes. If we take into account the existence
of side spans the effect of higher order terms
becomes rather small in fundamental mode.

Ver
{m/sec)]|

150
case ofd=35 2507 B/A=30 AL
e o / '

“cased Bb/d=g

100

50

100 90 80 70 60 50 %
Load Length

Fig. 6 Change of Critical Wind Verocity
relating the Load Condition.

Ver
(m/sec)
150
4 100
50 N
2b/d
100,
1.0 2.0 3.0 4.0

80

60,

By
’ Fig. 7 Three Dimentional Expression of V.,
b/d and Load Length.

Fig. 7 indicates a three dimensional relation,
of V,,, b/d and load condition, from which it
is considered that the most profitable shape be
given as a stationary point on this surface in
the diagram.

An empirical form of expressions of critical
wind velocity for a bridge being based on flutter
theory is proposed by A. Selberg®.
quence with deformation of flutter equation, he

In conse-

demonstrates the effect of various structural
parts to improve aerodynamic stability of a sus-
pension bridge, since the flutter velocity V,
has no direct bearing to the actual bridge sec-
tions. However, it may be used as a reference
value for comparison of different wind tunnel
He introduces the factor K as follows,
|7 G VO (14)

and determine the K-values from experiments

tests.

of section models. His investigation suggests
to give the bridge cross-section such a form
and such dimensions that the factor in eq. (14)
will be a maximum.

Furthermore an empirical formula for V5 is

given as

Ve 0.445y (0p'—a, L2
“
where
2 o b?
=8(—), u=
Y <b> T aw
Thus, from eq. (15), it is noticed that the
Qutter velocity V is apparently proportional to
the bridge width, and further that the most
effective measure is to increase wy to increase

the aerodynamic stability.

Substituting the same dimensions of our
calculation to the equation (15), the critical
wind velocity obtained is indicated in Fig. 5.

Fig. 8 indicates the variation of critical wind
velocity for the suspension bridge considered
lere with the various combinations of deflec-
tional and torsional circular frequencies. In
this diagram, the relationship is given as a
spatial curve which is projected to the V,,~o,
This signifies that the critical velocity
depend in complicate fashion on the circular
In this case the value of V,
seems to reach the locally maximum near o,
=0.94 throughout the four kinds of loading con-

plane.

frequencies.
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ditions and this accidentally corresponds to the
case 5 (2 b/d=2.00) in Table 3.

Ver
(n/sec)

Fig. 8 The Variation of Critical Wind Velocity
relating the Circular Frequency of Free
Vibration.

3. Conclusion.

In the previous paragraphs, we introduced
the effect of spanwise-distributed wind and the
geometric sharp b/d into the problem of aerody-
namic stability of suspension bridges for the
purpose to improve the F. Bleich’s flutter theory.

Based on result of our calculations we may
conclude that the geometric factor 2 b/d should
exceed 3.0 for such structural scale of bridge
as considered here.

In practical design, it is obvious that we must
take into an account of the structural strength
of the bridge at first, and then above condition
for geometric shape should be satisfied in the
view of aerodynamic stability.

In spite of the facts that some uncertain
matters still remains to be discussed such as the
application of thin airfoil theory to the decision
of external forces acting on floor system and
the fundamental equation of torsional vibrations,
a criterion for the aerodynamic problems of sus-
pension bridge can be founded analytically accord-
ing to the theoretical considerations presented
in this paper.
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