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A STUDY ON ELECTRONIC COMPUTATION
OF CLOTHOIDAL ALIGNMENT

Ryokichi Kamiya*, Goro Kuroiwa** C.E. Member
and Hideo Nakamura*** C.E. Member

INTRODUCTION

It is only recently that electronic digital com-
putors have been used for computing planimetric
alignments for new highway projects, and, there-
fore, the tendency has been only to apply the
conventional manual methods and for the calcula-
tions, and merely to use the computor as a
speedier method of carrying them out. How-
ever, this is not to say that manual methods
are always the best methods to use in conjunc-
tion with a computor : the capability of manual
methods is so limited that, if always referred
to, the development of new methods for use in
connection with electronic computation is res-
tricted.

In order to employ electronic computors to
their full advantage, it is necessary to develop
new mathematical approaches to the problem
and ways of handling the calculations that are
especially suited to the equipment being used.
This paper describes such a new method of
handling the calculations for planimetric align-
ments of new highways by electronic means.

Usually planimetric alignments have been com-
puted as follows : firstly, using a clothoid table
and a set of clothoid and circular arc rulers,
the alignments were selected graphically on the

map to satisfy several control points.  Then,

M,
movable

by electronic computor, each clothoid and cir-
cular arc was connected to satisfy the boundary
conditions of each alignment, and the correct
co-ordinates of each station were determined.
To carry out this computation for connecting
the alignments smoothly, three methods have
been used as follows :

1) Fixing the tangents and varying the cir-

cular arc.

In this method the clothoid parameters and
the radius of the circular arc which were graph-
ically selected are not changed during the cal-
culation.

Figs. 1 shows an example of this typé.

A traverses are fixed
= Tangent tr

LP.

0
Fig. 1

2) Using three circular arcs, fixing the cen-
tres of the end circles and varying that of
the intermediate circle,

Also in this method the clothoid parameters

My
fixed

4
movable

Fig. 2
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and the radii of the circles are not changed
throughout the calculation.

Flg 2 illustrates an example of this type.

3) Adjusting the clothoid parameter or ra-
dius of the circle instead of varying the
co-ordinates of the centres of the circles, as
in cases 1 and 2.

In this method the boundary conditions of

alignments are given exactly. Fig. 3 shows an

example of this type.

Fig. 3

In the methods 1) and 2), if the alignments
thus calculated cannot satisfy the given control
points, a new selection of alignment parameters
must be made and the computation must be
done all over again. In addition to this repeti-
tion, when the location engineer prefers certain
clothoid parameters which are neither listed on
the table nor are given by one of the rulers in
the set, he must repeat the troublesome com-
putation to select a suitable parameter.  Such
difficulties usually occur in the calculation of
alignments, especially at interchanges. In order
to resolve such difficulties, the basic approach
adopted in the new method which is described
in this paper is based on that of method 3 and
the alignment parameters are not selected graph-
ically, but are calculated by the computor to
satisfy the given boundary conditions exactly.
These will be in the form of a solution to a
set of simultaneous equations, and to solve them
new mathematical approaches suitable for elec-
tronic computation will be introduced.

1. DEFINITION

To solve the above mentioned problem, it is
inconvenient to introduce the clothoids in their
usual form into the simultaneous equations.

Therefore, the clothoid function is transformed
into what is referred to in this paper as “clo-

thoidal sine” (sincl) and “clothoidal cosine”
(coscl) which are defined as follows :
3 5 7° 7 77

SlnC1T=T—‘5—§‘!‘+’9_H—I§TZT+
............... (1-D
o L2 AT B 8
320 74 1161 158!
............... (1-2)

According to these equations, the co-ordinates
(z,y) of a point on the clothoid curve is given
by the radius R and tangential angle ¢ of the
point,

L2 R OSHICL Tevererreveneeenanennerieaanns (1-3)
Y=2 Rcosclgeerereemeennernieennnn, (1-4)

Here it must be noticed that the expansions
of sincl ¢ and coscl ¢ have similar forms to the
expansions of sin# and cos 8, and comparing
the above equations, (1-3) and (1-4), to the
general equations of a circle, (1-5) and (1-6),
one can see that they can be considered to cor-
respond to the equations of a circle with a
radius 2 R.

Lo ST 0 veveernrerarroriierieieearene (1-5)
YT COS O weeevereeesnnreinienee e (1-6)

From eqns. (1-5) and (1-6), the length of
arc is given by /=70 and similarly, the length
of a clothoid from its origin is given by L=
2R~

When calculating the clothoid function by
computer, it is necessary to determine automat-
ically the quadrant in which the point lies.
This problem is settled by giving a sign to R
and A’

In the case when the curve is clockwise (see

Fig. 4)
R>0
In the anti-clockwise case
A?>0 A2<0
R<O R<0
L<0 L>0
>0 <0
(2 T %
T
Ar<0 Ar>0
R>0 : R>0
L <0 L>0
<0 >0
¥
Fig. 4
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R0
and, if the curvature increases along the curve,
then :
A2 >0
and if the curvature decreases, then :
AP0
Denoting the curvatures of two points (P,
P,) on the clothoid by 1/R, and 1/R, :
and if 1/R,—1/R, >0,
then the curvature always increases and the sign
of A? is positive, to the above definitions.  This
is called a real clothoid.
it 1/R,—1/R, <0
the curvature decreases and a sign of A? must
be negative.  This is called an imaginary clo-
thoid.
Following these definitions, the quadrant of
a point P(x,y) on the clothoid can be deter-
mined and these relations can be represented in

a table as follows :

& 8
3 NN
b g )
-t 2 i3] 3] 2] O
I S B A B B B I B
@ o N [N
< it il
] >
1 +v.| tv. | ‘v, | +v. | +v. +v, +v,
2 —V,| +v.| —v, | —v.| +v.| —v, +v,
3 +v. | —v.| +v.| +v.| +v.,| —v. —,
4 v, | ~v,| —v,| —v.| +v.,| +wv, —v,

Next, the question of the centre of curvature
will be considered. = The locus of the centre
is given by the formulae;

Zpy=2 Rsinclc—Rsin g «oeerveervens a-7
Yn=2Rcoscl t+ Rcosz -weeereercenn (1-8)

Here, two more functions are introduced :
“hybrid sine” (sinhb), and “hybrid cosine”
"(coshb) defined as;

sinhbr=2sincl r—sinz «-rerevrennnns (1-9)
and
coshb z=2coscl 7+ cosz- eereerecnnnns (1-10)

Then the locus of the centre is' given by the
hybrid sine and hybrid cosine :

2, =R SInhb 7 sveeresrereeesisivnieneenn (1-11)
V=R COShD 7 +++errereenniirinanannnnn (1-12)

In addition two more functions will frequent-
ly appear, referred to as the clothoidal chord
(chordcl) and hybrid chord (chordhb) defined

as :

chordel = 4/sincPPr + coscl’r  *++++ (1-13)
chordhb’z = /sinhb?r + coshb’r -+ (1-14)
Here it must be noted that the co-ordinate
systems which are used in this paper are all
clockwise systems which are the same as the
national geodetic co-ordinate system.

2. THE SOLUTION OF SOME FUNDA-
MENTAL EXAMPLES.

In this section the solution of several kinds
of fundamental problem will be explained ac-
cording to the definitions of preceding section.

On Fig. 5 the notation which will be used in
following sections is shown.

X
¢ Py Xy, Yy)
Ead
M
P
(Xmy Yn)
Y (%, Z/m) Ef;’))
Fig. §

2-1. A clothoid defined by the origin, any
one point on the clothoid and the azimuth
of the back tangent @,.

Designating the National plane co-ordinate of
the clothoid origin by (X,,Y,), the azimuth of
back tangent by @, and the National co-ordinates
of any point on the clothoid by (X,Y). Then
among these points, there exists the following

relationships :
(X—X)Dcos @, + (Y — Y )sin 0,
=2 =2 R SinCcl treeerererererariainine (2-1)
—(X—-Xpsin®,+(Y—Y,)cos @,
=y=2Rcosclzeereremrrrenininennn. (2-2)

In these equations if (X, Y) and (X, Y,)
are known, substituting
(X=X,)=8,2C08 § +ereerrrerreirennss (2-3)
(Y= Y,)=S,o8in § «eeeeeemmvernoriens (2-4)
into (2-1) and(2-2), one finds that
Syecos(0— @) =2 Rsincl v «+eeeeeeenns (2-5)
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Table 1
deg sincl coscl tancl chordc! rad
40° 517 30”7 0.6776 9239 0.1634 5134 0.2411 8809 0.6971 2503 0.7131 1244
31 0.6776 9653 0.1634 5348 0.2411 8978 0.6971 2956 0.7131 1729
32 0.6777 0067 0.1634 5562 0.2411 9147 0.6971 3408 0.7131 2214
33 0.6777 0480 0.1634 5776 0.2411 9316 0.6971 3861 0.7131 2699
34 0.6777 0894 0.1634 5990 0.2411 9484 0.6971 4313 0.7137 3184
35 0.6777 1308 0.1634 6204 0.2411 9653 0.6971 4765 0.7131 3668
36 0.6777 1721 0.1634 6418 0.2411 9822 0.6971 5218 0.7131 4153
37 0.6777 2135 0.1634 6633 0.2411 9990 0.6971 5670 0.7131 4638
38 0.6777 2549 0.1634 6847 0.2412 0159 0.6971 6123 0.7131 5123
39 0.6777 2962 0.1634 7061 0.2412 0328 0.6971 6575 0.7131 5608
40 51 40 0.6777 3376 0.1634 7275 0.2412 0497 0.6971 7027 0.7131 6093
41 0.6777 3790 0.1634 7489 0.2412 0665 0.6971 7480 0.7131 6577
42 0.6777 4204 0.1634 7703 0.2412 0834 0.6971 7932 0.7131 7062
43 0.6777 4617 0.1634 7918 0.2412 1003 0.6971 8384 0.7131 7547
44 0.6777 5031 0.1634 8132 0.2412 1172 0.6971 8837 0.7131 8032
45 0.6777 5445 0.1634 8346 0.2412 1341 0.6971 9289 0.7131 8517
46 0.6777 5858 0.1634 8560 0.2412 1509 0.6971 9742 0.7131 9001
47 0.6777 6272 0.1634 8774 0.2412 1678 0.6972 0194 0.7131 9486
48 0.6777 6686 0.1634 8988 0.2412 1847 0.6972 0646 0.7131 9971
49 0.6777 7099 0.1634 9203 0.2412 2016 0.6972 1099 0.7132 0456
40 51 50 0.6777 7513 0.1634 9417 0.2412 2184 0.6972 1551 0.7132 0941
51 0.6777 7927 0.1634 9631 0.2412 2353 0.6972 2003 0.7132 1425
52 0.6777 8340 0.1634 9845 0.2412 2522 0.6972 2456 0.7132 1910
53 0.6777 8754 0.1635 0059 0.2412 2691 0.6972 2908 0.7132 2395
54 0.6777 9168 0.1635 0273 0.2412 2859 0.6972 3361 0.7132 2880
55 0.6777 9581 0.1635 0487 0.2412 2859 0.6972 3813 0.7132 3365
56 0.6777 9995 0.1635 0702 0.2412 3197 0.6972 4265 0.7132 3850
57 0.6778 0409 0.1635 0916 0.2412 3366 0.6972 4718 0.7132 4334
58 0.6778 0822 0.1635 1130 0.2412 3535 0.6972 5170 0.7132 4819
59 0.6778 1236 0.1635 1344 0.2412 3703 0.6972 5622 0.7132 5304
40 52 00 0.6778 1650 0.1635 1558 0.2412 3872 0.6972 6075 0.7132 5789
Table 2
deg sinel coscl tancl chordecl rad
29° 217 00~ 0.4989 7467 0.0858 4230 0.1720 3738 0.5063 0487 0.5122 5414
01 0.4989 7915 0.0858 4389 0.1720 3903 0.5063 0955 0.5122 5898
02 0.4989 8362 0.0858 4548 0.1220 4069 0.5063 1423 0.5122 6383
03 0.4989 8810 0.0858 4708 0.1720 4234 0.5063 1891 0.5122 6868
04 0.4989 9257 0.0858 4867 0.1720 4399 0.5063 2359 0.5122 7353
05 0.4989 9704 0.0858 5027 0.1720 4564 0.5063 2827 0.5122 7838
06 0.4990 0152 0.0858 5186 0.1720 4730 0.5063 3295 0.5122 8322
07 0.4990 0599 0.0858 5346 0.1720 4895 0.5063 3763 0.5122 8807
08 0.4990 1047 0.0858 5505 0.1720 5060 0.5063 4231 0.5122 9292
09 0.4990 1494 0.0858 5665 0.1720 5225 (.5063 4699 0.5122 9777
29 21 10 0.4990 1942 0.0858 5824 0.1720 5391 0.5063 5167 0.5123 0262
11 0.4990 2389 0.0858 5983 0.1720 5556 0.5063 5635 0.5123 0747
12 0.4990 2836 0.0858 6143 0.1720 5721 0.5063 6103 0.5123 1231
13 0.4990 3248 0.0858 6302 0.1720 5887 0.5063 6571 0.5123 1716
14 0.4990 3731 0.0858 6462 0.1720 6052 0.5063 7039 0.5123 2201
15 0.4990 4179 0.0858 6621 0.1720 6217 0.5063 7507 0.5123 2686
16 0.4990 4626 0.0858 6781 0.1720 6382 0.5063 7975 0.5123 3171
17 0.4990 5073 0.0858 6940 0.1720 6548 0.5063 8443 0.5123 3655
18 0.4990 552t 0.0958 7110 0.1720 6713 0.5063 8911 0.5123 4140
19 0.4990 5968 0.0858 7259 0.1720 6878 0.5063 9379 0.5123 4625
29 21 20 0.4990 6415 0.0858 7419 0.1720 7043 0.5063 9846 0.5123 5110
21 0.4990 6863 0.0858 7578 0.1720 7209 0.5064 0315 0.5123 5595
22 0.4990 7310 0.0858 7738 0.1720 7374 0.5064 0782 0.5123 6079
23 0.4990 7758 0.0858 7897 0.1720 7539 0.5064 1250 0.5123 6564
24 0.4990 8205 0.0858 8056 0.1720 7705 0.5064 1718 0.5123 7049
25 0°4990 8653 0.0858 8216 0.1720 7870 0.5064 2186 0.5123 7534
26 0.4990 9100 0.0858 8375 0.1720 8035 0.5064 2654 0.5123 8019
27 0.4990 9547 0.0858 8535 0.1720 8200 0.5064 3122 0.5123 8504
28 0.4990 9995 0.0858 8694 0.1720 8366 0.5064 3590 0.5123 8988
29 0.4991 0442 0.0858 8854 0.1720 8531 0.5064 4058 0.5123 9473
29 21 30 0.4991 0890 0.0858 9013 0.1720 8696 0.5064 4526 0.5123 9958
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Seesin(@—@,) =2 Rcosclz «+vevveeenn (2-6)
Dividing (2-6) by (2-5)
coscl T
tan (6—-®0> — m ..................... <2_7)

In this equation (6—®,) is clearly a bearing
angle of a point P between the abscissa and a
segment from origin to the point P on the
clothoid, and it is usually denoted by o.

Therefore, if one defines

coscl

sincl ¢
then
tan 0 =1ancl 7 cereerrrrrrerrriitiriccanrenns (2-9)
Table 1 and 2 is a new clothoid table made
by the authors.
using this table is given below :

An example of a problem

Example 1{.
Data :
X Y
P, 65 381.256 m 38109.125 m
P, 62 996.825 38 581.362
R o
P, oo 182°21'35.76
P, to be found to be found
then
g Yo Yo 472237
T X,-X, 2384431

= —().198050185
and
6=168°47'51"1
o=0—0,= —13°33'44"5
tancl z=tan o= —0.24123020
then from the clothoid table 1 above;
7= —0.71323342 (—40°51'55"0)
O, =0,+1=223°13'30"6
sincl = —0.67779561
(X, —X)cos 0, + (Y, — Y,)sin @,
2 sincl ¢
=—-1743.1243 m
A?=2 1 R*= —4334294.087
(imaginary clothoid)

R

and
A=2081.8963
In order to do this calculation by electronic
computor, it is necessary to use an inverse func-
tion of the clothoidal tangent.  The inverse
function of tancl is expanded by the Tchebychev
interpolation as follows :

= 2.99999 99616 tan o
77142 21291 tan®c
+.47323 21515 tan®c
.32278 31681 tan’s
+.19801 37799 tan’c «+eeereeree (2-10)
Provided that [tan ¢]<0.340182285
and |z{<1.000000000

2-2. The case when the curvature at any

one point is given.

This is a case where ¢, and r are unknown
in the formulae (2-1) and (2-2). In order to
find a solution to this case, equations (2-1) and
(2-2) are squared and added :

St= (X, - X))+ (Y, - Y)?=4R*
X (SINCIP7 4 COSCIZE) +vvrvrrersmvnvenes (2-11)
according to the definition (1-13) :
VX X))+~ YY)
2R

chordcl =

Then, r can be found from (2-12) and ¢ Ean
be found from (2-9).

And, as
Yx - Yo
tan § = X X,
then
D,=0—a

Therefore, one can see, if the curvature of a
point is given, the clothoid passing through this
point and the origin can be determined uniquely
together with azimuth of the back tangent @,.

A numerical example of the this case is as

follows :
Example 2.
Data :
X Y
P, 65 381.256 m 38109.125 m
P, 62 996.825 38 581.362
R o
P, ) To be found
P 2400 m To be found

from eqn. (2-12)
'\/(X1_Xn)z -+ (Yx_ YO)Z
2R

_ +/(2384.431)" + (472 237)°
2x 2400

=0.5064051105

looking up chordcl ¢ in table 2
r=0.51235798 (29°21'2174)
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472.237
—2384.431

§=168°47'51"1
tan o=tancl z=0.17207278
0=9°45'48"4
O,=0—0=159°2'2"7
D, =0,+r=188°23'24"1
A*=27 R*=5902363.93
A=2,429.4781
2-3. The case when A is given in the
problems 2-1 and 2-2.
In this problem, in addition to (2-1) and
(2-2) following condition exists
27t R*=A?

namely, it is necessary to solve a set of simul-

tan = = —0.19805019

taneous equations with three unknowns.

For example; the case where the clothoid
origin is fixed at a certain point (X,,Y,) and
the clothoid with a given parameter must pass
through a point (X,,Y,) is of this type.

To solve the simultaneous equation, substitu-
ting (2-13) into (2-11)

St = <X1_Xo>2+ (Yl’" Yo>2

= 2 ;4 (sincl?z + coscl®z) «oreeeeen (2-14)

In order to solve this problem using table 1,

first 5?/2 A® must be computed, then one is able
chordcl?z

T
To solve this problem using an automatic

computor it is necessary to make an expansion

to find ¢ by looking in the column

. . . 1
series of the inverse function of — chordcl’z.
T

The same must be mentioned about the in-
verse function of chordel r for the case described
in the last section. ‘

They are expanded by the Tchebychev method
as same as the inverse function of tanclr, as
follows :
putting

y=chordcl ¢

7=1.0000000021 y+0.0444443728 °
+0.0052212011 y+0.0008016630 y’
+0.0001499600 y° +0.0000160114 y**
+0.0000119564 y'® -eeverennnnnnns (2-15)

Provided
7] <1
and putting

chordcl? \*/®
(%55
= +2.08008382638 = +0.42857078435 x*
+0.228010647 2° +0.158127474 x*
+0.134206515 2° +0.061859355 x*
40.2216573L eeevereeninrreaanens (2-16)
Provided
[z] <1
These approximation formulae are listed in
the appendix with other various functions.

2-4. The case when R or r is given with
the clothoid parameter A.

This problem is the same as the usual method
where the elements of the alignment were gra-
phically determined.

Since the co-ordinates (x,,y,) of a point on
a clothoid are given by

x,=2 R sincl r,
¥y, =2 R,coscl r,
The problem is reduced to the simultaneous

equations :
(X, ~X)cos @,+ (Y, — Y)sin @0, =,
............... (2-17)
— (X, —X)sin @, + (Y, — Y)cos O, =1y,
............... (2-18)

This problem can be classified into two cases;

(a) How to determine X, and Y, when the
azimuth of the back tangent @, is given
and the origin of the clothoid is fixed,
and

(b) How to determine X, and Y, when the

location of the point (X,,Y,) on the clo-
thoid and the azimuth of the back tangent
@, are given

These two cases can be both solved using
the equations;

X, — X, =2,c08 Oy — y,SIN D +r+veeeee (2-19
Y, — Y, =x,8in @, + 3,08 D, w+evreeer (2-20)

2-5. The case where the back tangent is
fixed.

In this case, the back tangent is fixed by
giving @, and a point P; on the tangent, and
the clothoid origin P,(X,,Y,) is able to move
along this line.  To solve this problem, it is
only necessary to introduce one more equation;

Y,— Yy=(X,— Xp)tan @eeeeeeees (2-21)

Then substituting (2-21) into (2-1) and (2-2),

one finds
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(X, —Xp)cos O+ (Y, — Yp)sin @,
—(X,— Xz)sec ®,=2 R sincl z--- (2-22)
and
— (X, = Xp)sin @+ (Y, — Yr)cos @,
‘ =0 R COSCL grrerrerreneenmenmenannunens (2-23)

If R is given in these equations, z can be
found from equation (2-23) using the inverse
function of cosclz. Consequently, the co-
ordinates of the clothoid origin (X,,Y,) can
be determined by solving equations (2<22) and
(2-21).

The solutions of these cases are summed up
in table 3.

Table 3
given conditions solutions
2-1 X, Y, Xo, Yo, O T, R
2-2 X, Y, Xo, Yo, R 7, O
2-3 XY X, Yo A o R, &
2-4 A, R(©)9, X, Y, (Xo, Yy) Xi, Yi(Xo, Yo)
2-5 XY X, Y r, Xo, Yo

3. THE CASE WHERE A CENTRE OF
THE CONTACT CIRCLE IS GIVEN.

Let the National plane co-ordinates of the
clothoid origin and the centre of the contact
circle be denoted by (X,,Y,) and (X,,Y,)

(X,,—X,)cos @, +(Y,,— Y,)sin @,

=xm=RsinhbT ...............(3_1)
—(X,,—X)sin®,+ (Y,,— Y, )cos @,
=ym=R COoShbh T veveeereroenrianiens (3..2)

These equations have the same form as the
equations mentioned in the proceding section,
except that sinclr and cosclt are replaced by
sinhb = and coshb . .

Therefore, one is able to use the same method
as given in paragraphs (2-1) to (2-5). The
solutions of this case are listed in table 4.

The case 3-5 can be used when the parameter
of a clothoid which is approximately parallel to
a given clothoid is required. Fig. 6 illustrates
an example of this type.

4. A CLOTHOID PASSING THROUGH
ANY TWO POINTS.

Letting the National co-ordinates of the clo-
thoid origin be X, Y,, the azimuth of the back
tangent be @,, and let the co-ordinates of two
points P, and P, on the clothoid be (X,,Y))
and (X,,7Y)), and the azimuths of the tangent,
tangent angles and radii of curvature at these
points be ©,,0,; r,,7v, and R,,R, respectively.

respectively. In this clothoid there exists follo- (Fig. 7)
wing relations. Then :
Table 4
Given conditions Unknowns Inverse function to be used
3-1 (Xo, Yo)» (Xoms Ym)s P R, t cothbt
3-2 (Xo, Yo), (Xoms Ym)s R 7, @ chordhb
33 (Xor Yo), (Xom> Yo), A R 0, chordhb?+
3-4 (X, Ym), Rorr, A X, Yo tan (§ — Op)
4-5 X1, YD), (Xoms Ym), @0, Ror = X,, Yo, r or R coshb r

PO(XO: Yﬂ)

PA (X‘h YA)

PT ( XT: YT)

Given Conditions

1\/[<me Ym)y RO’ d: (po

Pu( Xy, Yp) or 4 & P Xy Y)
Unknown

PO(-Xos Yo): T

Fig. 6§
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M,
(X Ya,)

M(X,,Y,)

myy Loy

¥’

Fig. 7

(X, —Xo)vcos O, +(Y,—Y,)sin®,

=2 RSINCl 7, +rerrrrereraerersrrinnnns (4-1)
— (X, —X)sin @+ (Y,— Y,)cos @,

=9 Rlcoscl Ty ereeresannanniinenaiiiiaas (4-2)
(X,—X,)sin @, + (Y,— Y,)sin @,

=2 R,SInCl 7, o evvreereeereenaanannnn. (4-3)
—(X,— X)sin®,+ (Y,~ Y,)cos &,

=2 R,coscl 7, ereeeererernniniiaiiiii. (4-4)
TR Z=1,R, coeererveveenenaninniinienn (4-5)
B =@y4 1, weeererennerenssnnnesraannenns (4-6)

and

Dy Dy b7y wrererererereninnenenaniniineans 4-7

There are seven equations in 13 variables, so
if the values of any six variables are known,
the equations may be solved. = This problem
is separated into several kinds depending upon
which seven are variables and which six are
known.

Some typical problems in the case will be
explained below and are listed in' Table 5.

Table 5

given conditions solations

4-1 | X0, Yo, X5y X2, 1 Y2
42 X, Y1, R, Xp, Y2, R, X, Yy, @, 01, 71, 72

4-3 |1 X,Y1, X, Y, 9, A4 Xo, Yo, @5, G2, 71, 72, Ry, Re
44 | Xy, Y1, Xo, Y2, 90,X@,Y0d Xo, Yo, @1, @z, 11, 72, Ry, Re

Dy, 1, Do, 71, 72, Rz, Rz

4-1. Points (X,,Y,), (X,Y,) and (X,Y,)
are given.

In this case it is enough to solve the set of
five simultaneous equations and find ¢,, R,, 7,,
R, and @,, but it is impossible to obtain the
rigorous solution of these equations directly and

here one must try to solve them by successive
approximation using the inverse functions which
were mentioned previously.  In this case one
can usually find an approximate value of @,, or
in some cases of R, and R,, and in a few
cases, of A.  Several cases with certain approx-
imate values of some variables will be ex-
plained :
4-1-1. The case when the approximate value
of @, can be found :
Putting
S,cos b, =X, — X, Ssinf,=Y,— Y,
S,cos 6,=X,—~X, and S,cosb,=Y,-7Y,
then
tan(f, — @,) =tancl g, «--ereeemseeneeens (4-8)
tan(&z—Q)o) = tancl Ty rereeeesereeeees (4_9)
As an approximate value of @, is given,
approximate values of 7, and ¢, can be found
from the above equations.
Then, approximate values of R, and R, can
also be computed from (4-1) and (4-2).
Denoting the corrections of these approximate
values by 40,, 4r,, 4R,, 4r, and 4 R,, respecti-
vely, and differentiating the equations (4-1),
(4-2), (4-3), (4-4) and (4~5), one gets :

3, 4D, = 4r 2 R smcl 7,+2 4 Rsincl 7,
............... (4-10)
—2,40,= 47,2 R, 671C08d 7,+2 4 R,coscl 7,
............... (4-11)
3,40, = 4r,2 R smclr +2 4 R,sincl =,
............... (4-12)
— 2,40, = 4r,2 R coscl 7,+2 4 R,coscl ¢,
............... (4-13)
27 4R, —27,R,4R,~R *4r,— R, 4z,

= R g Ry eeeereenenveneesmnaninne (4-14)
and provided that
x,=2 Rsincl 7,
¥,=2 R,coscl 7,
y,=2 R;sincl z,
v,=2 R,coscl z,

and
d . 3 ¢ b5 ¢t
d—;—smclr=l—-'g-2—!—+-g—zz-—
2 4 ¢ 6 7°
Zcosclr=—3*r— 7 ? 1—1—5-‘—
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One can obtain the corrections by solving the Ar, =T dDy -weoveeeeeremennenans (4-16)
simultaneous equations (4-10) to (4-14). Each Ury= UL AD, +veeeeeemeremeennemreneenennes (4-17)
correction is derived as follows : AR, =V dDovvveeoeveenererenseieannnn. (4-18)

4D = — R~ R/}*
0 RU-R'U—3e.R,V,.—2:.V.R, AR, =TV, D eeevrmevemeenvrennannnn (4-19)
............... (4-15) where
U;= asincle;tycoseley e, (4-20)
2R <co cl 2 inel ¢;—sinel ;——coscl )
i SCL T; d Ti 1 T; Incl z; d.’t,- T;
d d .
Vi coscl r,-+x,—7:s1ncl 7;
V= : L P (4~21)
2<s' cl d coscl r; —coscl i—sinel )
ek T dr; i i dr; i

Repeating these calculations until 7,R,*—7,R,?
vanishes, one can obtain the solutions with a
sufficient accuracy.

4-1-2. The case when approximate values of
R, and R, are given :

The following two equations can be derived
as in paragraph 2-2,

(X, — X))+ (Y, — Y)?=4 R, *chordcl’r,

so that solving the inverse function of chordcl z,
one obtains the approximate values of 7, and
7,, and these approximate values of 7, and =,
lead to two different values of @, from equa-
tions (4-8) and (4-9).

Taking their mean as the approximate value
of @, and denoting the corrections for the
approximate values of the unknowns as 4R,
4R,, 4v,, dv, and 4@, respectively, one can
apply, the same method as in the last paragraph
to solve this problem.

4-1-3. The case when the approximate value
of A is given.

As in paragraph 2-3,

(X, ~ X+ (¥, Y,)r =2 a» hordel'e,
T

............... (4-24)

R G R A

............... (4-25)
Consequently, from the inverse function of

chordcl®r . .

E— one can obtain the approximate values

of 7, and 7,.  Putting these in the equations

(4-1) and (4-3), the approximate values of R,

and R, are obtained.

To this end, the method of solution for this
case becomes entirely the same as that of the
last paragraph.

4-2. The case when P,: (X,, Y, R) and
P,: (X,,7Y,, R,) are given.

If R, and R, are known and denoting the
curve length between P, and P, as L, the
relation

of L LN -
L,=A <R2 % > (4-26)

can be used effectively.  The curve length L,,

can be substituted approximately by the chord

length S,, between P, and P,, that is
L,=y/{X,~ X))+ (¥,— Y =Sk

Then from equation (4-26) one gets the
approximate values of A% and ¢, and r,, and
the clothoid co-ordinates (x,, ¥,), (x,,,) can
be obtained successively.

The equations (4-1) to (4-4) can be converted

as
2 Y1

tan(@,,— @) = YT (4-28)
Z,— X,
where
tan @, = —;—;-:E—;—;— ..................... (4-29)

and getting approximate values of @, from the
equations (4-28) and (4-29), the approximate
values of X,,Y, can be obtained by

tan (@, — @,) =tancl ¢, --+ee-errererenne (4-30)
where

s =ux2 +y12 .............................. (4-31)

X, — X, == 5,008 Dyvevervveresuneniens (4-32)

Y, Y= 5,8i0 @ evvvererernennnnnnenes (4-33)

Next, denoting the corrections of each approx-
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imate value of the unknowns as 4X,, 4Y,,
dr,, dv, and 4®,, the following equations can be
derived from equations (4-1) to (4-5),

— 4 Xcos Oy —4 Y sin @y + 4D, ~y,

+4 X,sin®,— 4 Y,cos @, 40,

—2R, dd coscl t,dr, =0 +eveenen (4-37)

Rj4e,— R,* 4z, =7, R}*—1,R,*

—2R, dd sincl 7,4z, =0 «v-eveene (4-34) These simultaneous equations can be solved
. . . . . . .
+4 X,sin q) 4 Y08 Oy 40y, by m.teratlon, until 7,R,*—1,R, v'amshes with
sufficient accuracy, and one obtains the final
-2 R d COSCI T;* A‘Z‘l 0 e (4“35) results.
—4X,cos ©,—4 Y,sin O+ 40+, The determinant of above simultaneous equa-
. .
=2 Ry~ ssinel £, dr,=0--ov-+:(4-36) 1ons 1
. d
—cos @, —sin @, ¥y, —2R, de. ——sincl r, 0
. d
sin ®, —cos®, —zx, —2R,——cosclz, 0
dr,
D= o d o e 4-39Y)
—cos®, —sin @, ¥, 0 —-2R, j sincl 7, ( )
. d
sin @, —~cos®, -z, 0 -2 R, 2 ——coscl 7,
0 0 0 —R? R,

and as D does not vanish, the above equation
has a solution.
Solving this equation one gets :

R R,*—7,R* U,
! R, U,R,—~R,U,
............... (4-40)
Joo— 7, R, —1,R,}? U,
2 R, R,U,~R,U,
............... (4-41)
where
U;=(x,— 1) smcl 7;
d
+ (yz_yl)—zr—:coscl Tyereeenennans (4-42)

then, by equations (4-28) and succeeding equa-
tions one can get @,,X, and Y, successively.

4-3. The case where (X,,Y,) and (X,,Y,),
@, and A are given.

This problem seems to have some difficulties,
in spite of its simple appearance. By substi-
tuting r=A?/2R* in the equations (4-1) to
(4-9),

(X, —X)cos(b + (Y — Y))sin @,

2

A
ZRZ 2Rsmc12R2

— (X, —X)sm(l) +(Y—Y)cos(l)

=2 R,sincl——

—2R, coscl

2 1

=2 R2c0s01

Although these simultaneous equations could!
be solved theoretically for the two unknowns.
R, and R,, practically it is not so easy, for it
is difficult to find the first approximations of
the two unknowns R, and R,.

This point is considered below.  There are
two ways to find the approximate values which
show themselves in the two quantities, ie. the
chord length between two known points on the
curve, and the direction angle of this chord in.
the local clothoid co-ordinate system, that is

=(X,~ X))+ (Y, =Y )% eerereens (4-44)
-7,
o,,=arctan—5——— X X, — By rrereerenes (4-45)

Neverthless, the clothoid curve has a distinct
characteristic which reveals itself in the follow-

ing relation

1 1 1
— P 4-46
R2 R 1 R 12 . ( )
AP, . .
where R,,= is a characteristic quantity

L,,
attached to any curve length between the two

given points on the clothoid at which the curve
has the radius R, and R,, respectively. = And
this relation is valid everywhere on the curve,
and the corresponding direction angle ¢,, may
have any value for any portion on the curve.

This implies that the way to discern even
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approximately the places where two points con-
cerned are lying, is in general, not accessible.

But from the view point of practical use, the
portion of the clothoid which usually appears
is confined to a small range, and we may esti-
mate the first approximation with sufficient
accuracy considering the above,

For example, we may assume that z, or r,
may be approximately equal to ¢, when it is
clear that the chord length is quite short. And
when chord length is correspondingly large, a
good approximation is the assumption that the
one of the two which lines near to the origin
is equal to half of o,,.

If one of the two 's is obtained approximately,
for example, z,, one is able to get at once the
approximate value of R,, Then R, can be
obtained from the following equations as in the
last paragraph,

2=V (K= Xt (Yo Y)? e (4-4T)

1 1 A?

% "R 5. N C 1))
and the corresponding z, can be derived.  This
means that the approximate values of the co-
ordinates of the two points concerned in the
local clothoid co-ordinates system have been
found. Let these be denoted by (x,,y,) and
(x,,y,), then the origin of clothoid co-ordinates
system is found in two different ways as follows;

X =2,c08 O,—y,sin O+ X -e-ve-e- (4-49)
Y, =z,5tn Oy +y,cos Do+ Y, - (4-50)
Xy =2,008 O, —y,8in O+ X, -+ (4-51)
Y, =2,8in @, +y,co08 O, + Y, ---- (4-52)

From the two values obtained above for the
co-ordinates of the origin, the means are taken

as .

which are assumed to be nearer the true
position of the co-ordinate origin.  Once the
tentative values of X, and Y, are determined,
one can follow the procedures described in para-

graph 2-1.
= arctancl(tan g,) «-----ee--eeeeerees (4-55)
r,=arctancl(fan ,) «+eeesrsereeereenn (4-56)
and

A? A?

N
where the signes of the square root term are
to be as same as that of the original.  The
obtained new values (r,,R,) and (z,,R,) will
be used for the iteration mentioned above,
which is carried out until the differences between
the two approximate values of the co-ordinate
origins become sufficiently small, as they con-

v (4-57)

verge to the true position.

4-4. The case in which ground co-ordi-
nates, P, : (X, Y), P,: (X,,Y,) of any two
points on the clothoid, and the ground co-
ordinates Q : (Xq,Yq) of a point on its back
tangent, the direction angle ¢, of which is
known, are given.

Let the co-ordinates of the origin of the clo-
thoid co-ordinate system be denoted by (X,, Y,),
then the condition that the point Q lies on the
back tangent whose direction angle is @, provides
the equation

Y,— Yo=(X,— Xo)tan @ye-seeeeeeeee (4-58)
which is another condition in addition to equa-
tions (4-1) to (4-5).

Of this case, one example where one point
on the clothoid is given and another example
where the centre of the contact circle is given
were mentioned in the previous sections 2 and
3. In those examples there were only 3 con-
dition equations, and one had to confine the
number of unknowns to three, but, on the con-
trary, in the case when two points on a clothoid
are given, since the number of equations for
the 6 unknowns of ,, R,, 7,, R,, X, and Y,,
are six as (4-1) to (4-5) and (4-58), the pro-
blem is solvable for 6 unknowns.

In the former case, substituting equation (4-
58) in equations (4-1) and (4-2) one obtained
the following equations :

(X, —Xg)cos @+ (Y, — Y)sin @,
+ (Xg— X,)sec ©,=2 R,sincl 7,

............... (4-59)
— (X, —XQ)sin @, + (Y, — Yg)cos @,
=9 R,COSCl Ty reeeeresesieiiiiinen (4_60>

the latter of which enabled one to find 7z, or
R, corresponding to a given R, or r,, and
putting them in equation (4-59) one got X,.
Then Y, was easily obtained from equation
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(4-58).

Next the case in which two points on a clo-
thoid are given is dealt with.  The following
two equations can be constructed for the second
point, in the same way as for one point

(X, —Xg)cos @+ (Y, — Yo)sin @,
+ (Xo—X,)sec ©,=2 R,sincl 7,

............... (4-61)
—(X,—Xo)sin®,+ (Y,— Yo)cos @,
=2 R,cosclz, wererreririnnrinirananns (4-62)
and, introducing one more condition equation
TR IE=T, R, e (4-63)

one is able to find the 5 unknowns from 5
simultaneous equations.

To solve these equations, one has to start the
computation with a certain approximate value
which will be selected for one of the unknowns
A,R,-,‘r,- or XO.

They will be dealt with in sequence below.

1) When A is given approximately, one finds
7,, R, v, and R,, by using the inverse function

1 . .
of el coscl 7 to obtain two different values
for X,. From the means of these one gets

the approximate values of r,, R, and <¢,, R,.
These values will necessarily lead to two dif-
ferent values of A, the mean value of which
enables one to make a calculation by interation
approaching to the final value.

2) When R, is given approximately, one
gets 7, from equation (4-60) and then X, from
(4-59).  On the other hand, the approximate
values of 7, and R, will lead to an approximate
value of A and from this, the approximate va-
lues of R,, r, and X, can be found from equa-
tions (4~61) and (4-62). The two different
values of X, will make the problem as same

7, is given, the method is the same.

3) When an approximate value of X, is
given, each pair of (R,, z,) and (R,, r,) will
lead to two different values of A, the mean of
which will enable one to make successive app-

roximations.

5. THE CASE IN WHICH THE CENTRES
OF TWO TANGENTIAL CIRCLES ARE
GIVEN.

This problem is an expansion of the case de-
scribed in paragraph 3, and there exists also the
analogy of paragraph 4. The boundary con-
dition equations are in general

(X1 — Xy)cos o+ (Y, — Y, )sin O,

=, = R,Sinhb g,eecrereesrvemvereecs (5-1)
— (X —X)sin @+ (Y,,,— Y, )cos @,

=Y =R,COShD 7,reeeeeeremmeneenenens (5-2)
(Xopo—XDeos @+ (Y,,,— Y,)sin 0,

=y =R,SInhb 7,eceeeeeresrerrerneen (5-3)
— (X — X)sin @+ (Y,,,— Y, )cos @,

= ya = R,COShD £yeesressereresmrunns (5-4)
E R =1,R,? weeeree e (5-5)

The method for solving the above equations
is given in the Table 6.

6. CONCLUSION.

In this paper a new approach to the compu-
tation for a clothoid curve based on a new def-
inition of clothoid functions is described. These
new functions are summarized in Table 4.

Also in this paper, the inverse functions of
each clothoid function are given in the form of
a Tchebycheff’s expansion which can be effec-
tively used in computations by electronic
computor.

In the usual computation of highway align-

as case (1). When an approximate value of ments using clothoid curves, each curve is con-
Table 6
given conditions solutions approximate values inverse functions
5-1 (Xo, Y0) (Xomt, Yom1) (Xomz, Youz) (@9, Ry, 11, Ry, 72) 1) @ arc cothbr
2) Ry, R; chordhb r
3) A —: chordhb?r
5-2 Riy Xty Y1) (R, Xz, Youz) (Xo, Yo, @o, 11, 72) curve length
5-3 (X1, Y1) (X, Y20, A (Xo, Yo) Ry, 1) (R, ) 4
5-4 (X1, YD (X, Y)0,(Xg, YR) (Xo, Yo) (Ry, 1) (Ry, 12) A
2) R
3 X
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nected by moving the circular arcs or the tan-
gents to be satisfied by the given boundary
conditions without changing the parameters
which are graphically selected on the drawings.
This method is sufficient when the location of
the highway alignments may be selected rather
freely.

However, there exist many cases where space
is restricted and there is little or no room to
adjust the location of the highway segments.
Many sites for interchanges and urban highways
are confronted by such lack of space where the
location of arcs or tangents may not be adjus-
ted. In such cases it is necessary to find the
most suitable parameters which satisfy the given
boundary conditions.  The method which is
discussed in this paper is surely an effective one
for determining the most suitable parameters
quickly and accurately by electronic computa-
tion.

The derivation of the coefficients of the
Tchebycheff’s expansions was undertaken by the
first mentioned author.

The authors wish to thank Prof. T. Maru-
yasu, University of Tokyo, and Mr. K. Kaji,
Nihon Doro Kodan, for their advice and sugges-
tions, and to thank the members of the comput-
ing section of Asia Air Survey Co., Ltd. who
performed the computations.

APPENDIX

APPROXIMATION FORMULAE OF
VARIOUS FUNCTIONS

1. Tangentclothoid (tancl)
Definition : tancl r=coscl z+sinel ¢
Formula : x=tancl
r=2.99999 99616 £ —0.77142 21291 =*
+0.47323 21515 2°—0.32278 317 2’
+0.19801 38 =°
Range of validity : |2} < 0.34301 82285
|z} = 1.00000 00000

Maximum error : 1.3x10™°

. Chordclothid (chordcl)

Definition : chordcl = (sincl =+ coscl z)/2
Formula : z=chordcl =
7=1.00000 00021 x+0.04444 43728 x*

+0.00522 12011 x°+0.00080 16630 x7
+0.00014 99600 x°+0.00001 60114 =
+0.00001 19564 2**

Range of validity : |z| < 0.95626

Vel < 1.00000
Maximum error : 4.2x107°
. Chordclothoid®s

T
Formula :
7==1.00000 00023 £ +0.08888 87214 «*
+0.02032 09304 x° +0.00605 53079 z”
+0.00223 97671 2° +0.00030 47543 =!
+0.00107 39617 x**—0.00060 87792 £
+0.00036 87403 «'7
Range of validity : |x| < 0.91443 05160
[z] = 1.00000 00000

Maximum error : 4x 107

. Cosinclothoid

Formula : z=coscl'*r
r==1.73205 080855 x+0.18557 67459 2 x*

+0.05188 25242 x°+0.01890 7921 x’
+0.00864 2101 z°+0.00051 7880 x2'*
-+0.00807 780 x'*—0.00425 059 x*°

Range of validity : |z] < 0.31026 83017

Jz] < 1.00000 00000
Maximum error : ~107*°

Cosineclothoid 7

172

Formula :

x=< coscl >2’3
Tl/z
r=2.08008 382638 x+0.42857 07843 5 2*

+0.22801 0647 x°+0.15812 7474 27
+0.13420 6515 £° +0.06185 9355 £
+0.22165 73 x**

Range of validity : x| < 0.31026 83017

{c] < 1.00000 00000

Maximum error : 5x 107°

. Cotangenthybrid (cothb)

Definition : cothb r=sinhb r~-coshb =

Formula : z=cothbr

1.00000 00052 2 —1.13285 19856 x°+0.32838 15154 2°—0.01524 68524 2"

=71.00000 00000 2 — 1.33285 17446 z'+0.51516 07337 z° — 0.05161 06533 2°

Range of validity : |z} < 0.83351 60378
Jz] < 1.00000 00000
Maximum error : 7x107°
7. Chordhybrid (chordhb)
Definition : chordhb r= =+ (sinhb?+coshb?z) /2

Formula : =+ (chdhb?r—1)"?
r==0.86602 54035 £+0.01237 17922 z*
+0.00039 36517 2£°+0.00001 53088 x’
+0.00000 06450 z° +0.00000 00319 2**
Range of validity : |z| =< 1.13302 80027

45
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Jz} < 1.00000 00000
Maximum error : 2x 1071
Chordhybrid?«

T

8.

Formula : z=

T
‘chdhb?r
¥=2.99990 67417 31(0.43961 56871 594 — z)/2
—0.99452 18953 68
7=0.39942 28136 —0.40999 14851 ¥
+0.04894 92429 y*—0.04041 24947 5*
+0.00585 30330 1 y*—0.00577 38835 y*
+0.00064 31927 y° —0.00093 82707 3
-+0.00005 23247 y*—0.00018 81463 y°
~-0.00000 69905 y*°—0.00001 35168 y**
+0.00000 19115 y'2—0.00001 84593 y**
—0.00000 41506 y*+
Range of validity : |z| < 0.43961 56871 594
v < 0.99452 18953 683
Iz} < 0.90845 35997 959
Maximum error : 5x 10~
9. Cosinehybrid

Formula : 2= (coshb?r—1)1/2
7=2,44948 97399 x-+0.26244 56401 2*
+0.06500 52333 2°+0.02025 21109 x7
+4-0.00613 39985 2°-+0.00437 95100 x*
Range of validity : x < 0.40104 72657
= = 1.00000 00000
coshb r <{ 1.16083 89093
Maximum error : 1x107%°

Hybridcosine?
T

10.

r=A[B

T
Formula : x=——+—
coshb?z ’

A=1.0000000092 20 z—3.22550 59287 12 z*
+3.41709 06714 73 2°—1.26894 911777 62 7
+0.09318 52305 75 z°

B=1.00000 00000 00 — 3.55883 86708 68 x*
-+-4.36526 35935 22 2 —2.09179 72875 80 z°
+0.29786 69266 00 x*

Range of validity : |z =< 0.86144 59698
l#] < 1.00000 00000
Maximum error : 1.3x10~°
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