群馬大学 大学院理工学府

(a)

レーザー超音波可視化試験を用いた CFRP-コンクリートの未接着部分の検出の検討

1. はじめに

近年,社会基盤構造物や材料に対する維持管理を目的に, 非破壊検査の重要性が高まっている.特に,超音波非破壊検 査法は,最も広く利用されている非破壊検査法の一つであ る. 一方, 先進材料である炭素繊維強化プラスチック (CFRP: Carbon Fiber Reinforced Plastics) を, 鋼材やコンクリートの 補強等に利用する事例が近年増加している. その際、CFRP を適切に接着できているか,また,構造物の供用期間中に接 着部分の剥離が生じないかが問題となる. CFRP の未接着 箇所があれば,当然,期待通りの補強効果が得られない可能 性がある、よって、この未接着部分を適切に検出できる非破 壊検査法の確立が必要となる.一般的に,土木構造物の検 査範囲は広範囲に渡る. そのため、効率的に、かつ検査員が 判断しやすい非破壊検査法¹⁾の開発が必要であろう. そこ で、本研究では、一部非接触検査が可能なレーザー超音波可 視化試験 (LUVT: Laser Ultrasonic Visualization Testing) を 用いて、CFRP-コンクリート複合試験体の未接着部分の検 出を試み, LUVT 結果に対しリカレントニューラルネット ワーク (RNN:Reccurent Neural Network) を用いて機械学習 を行う. 次に, RNN で作成した分類器を用いて未知のデー タを判定させる. 以下では, まず, LUVT について説明する. 次に,本研究で用いた CFRP-コンクリート複合試験体につ いて説明した後、LUVT 結果を示し、最後に RNN を用いた 機械学習結果を示すことで、本手法の有効性等について検 討する.

2. LUVT 概要

本節ではLUVTと用いた試験体について簡単に説明する.

(1) LUVT とは

まず, LUVT について説明する. 図1はLUVT 装置の全 容を示している.図1(a)のレーザー遮蔽ボックス内部に図 1(b) に示すように、試験体を設置し、試験体にレーザーを照 射する. LUVT では, パルスレーザーを, 試験対象とする材 料の表面に照射し,熱膨張を発生させることで,超音波を伝 搬させる. そして, 予め設置しておいた探触子でレーザー超 音波を受信し、その探触子から試験体へ超音波が伝搬する 様子を相反定理を用いて可視化する. そのため,後に示す図 2-3 では,送受信を入れ替えることにより,探触子から超音 波が送信される映像が得られることに注意されたい. なお, 本研究で扱う LUVT では、超音波伝搬挙動の可視化結果を

Key Words: 非破壞評価, レーザー超音波可視化試験, CFRP, 機械学習 群馬県桐生市天神町 1-5-1 〒 376-8515

群馬大学	理工学部	非会員	松原	江里
	inside situation	rec	eeiver aser	

正会員

(b)

○斎藤

隆泰

図2 CFRP-コンクリート複合試験体の様子.

連番画像として出力できる. LUVT の仕組みの詳細につい ては, 文献²⁾ 等を参照されたい.

(2) 試験体概要

本研究で用いた試験体の概要を図 2 に示す. 縦, 横, 120mm×170mm で厚さ 50mm のコンクリート試験片に, 100mm×150mm, 厚さ z_cmm の CFRP を接着させる. CFRP は、トレカ T700 のプリプレグを使用したものであり、コン クリートとの接着面は接着しやすいように片面粗し仕様の ものを用いている. また, 厚さ zc は 1mm, 8mm のいずれ かとした. 接着のためのプライマーは炭素繊維接着用, 貼 付け接着剤はグレーで不透明なアンカー定着用のものを 用いている.ただし,図2に示すように,中央やや右側に, 10mm×10mmの未接着部分を設ける.未接着部分はCFRP の接着面にフィルムを貼り付け、空気層を設けることで作 成した. LUVT における受信探触子は図2における紫色の 箇所に設置した. 用いた探触子は中心周波数が 1MHz の

斜角探触子 (45°, コンポジット型) である. ただし, 一般的な

図 3 CFRP の厚さが 1mm の場合の LUVT 可視化結果 (a)260step (b)380step における未接着部分のない場合 (c)260step (d)380step における未接着部分がある場合.

探触子であるため, 音響異方性を持つ CFRP 内部に超音波 が 45°の入射角で必ずしも入射しないことに注意されたい. そのため, ここでは試験的に, この探触子を用いていること に注意する.

3. LUVT 結果

以下, LUVT 結果の一例を示す. 図 3 は, CFRP の厚さ z_c が, z_c = 1mm の場合の結果を示している. ただし, 各図中の (a), (b) は未接着部分がない場合 (欠陥無し), (c), (d) は未接 着部分がある場合(欠陥有り)における,異なる時刻での超 音波伝搬画像の一例を示していることに注意されたい. ま た,図3中の水平軸,鉛直軸はそれぞれ,図2中の可視化範 囲の左上を原点とした場合の座標軸を示している. 図 3(a), (b)の欠陥無しの場合に着目すると, qS 波³⁾は目立った反 射・散乱をすることなく, CFRP 中を伝搬していることがわ かる.しかしながら,欠陥が存在する図 3(c),(d) に着目する と,未接着部分が存在する箇所付近で qS 波の位相が反転し ていることがわかる. 未接着部分として設けた空気層の影 響が、CFRP の表面の超音波伝搬に現れていることがわか る. なお, 紙面の都合上, 詳細は割愛するが, zc = 8mm の場 合,空気層の影響は見られなかった.以上の実験結果より, CFRP の厚さ z_c が小さい場合は, LUVT を用いて CFRP-コ ンクリート間の未接着部分を視覚で容易に判断できること を確認できた.

4. RNN を用いた未接着部分の自動検出

次に,時系列データの入力に対し特徴を抽出できる RNN を用いた機械学習により,未接着部分の自動検出を試みた 結果を示す.用いた RNN のネットワーク構造は,入力層,双 方向長短記憶層,ドロップアウト層,全結合層,ソフトマック ス層,出力層から構成されている.なお,入力層には,LUVT 結果の時系列動画と学習済み googleNetwork を使用し,1 フ レーム毎に画像の特徴を1次元データに変換したものを入

図 4 RNN の精度と損失 (a) 学習回数に対する損失 (b) 学習回数 に対する精度.

力した. 全LUVT 動画を学習区画と検証区画の 8:2 に分割 する. なお, LUVT 結果は 2 個の元動画にガウシアンノイズ を施す等のデータ拡張を行い, 合計 60 個の動画に対し学習 を行った. 図 4(a) に RNN の学習回数に対する学習損失と 検証損失を, 図 4(b) に RNN の学習回数に対する学習精度 と検証精度を示す. 図 4 から, 損失は減少し, 精度は高い精 度を維持していることが確認できる. よって, 正しく学習が 行われたものと判断できる. 最後に, RNN に 40 個の未知の データを識別させた. 正しく分類できたデータは, 36 個で あった. 未知の学習データに対する未接着部分の有り, 無し の分類を正しく分類出来た確率は, 90%であるため, 概ね正 しく分類できたと考えられる.

5. まとめと今後の課題

本研究では、CFRP-コンクリート複合試験体の未接着部 分を対象とした LUVT を行った. CFRP が薄い場合は、試験 者の目で、未接着部分の有無を判断できる程の可視化結果 を得ることができた.また、LUVT 結果に対し、RNN を用い た機械学習を行った.未接着部分の有無を概ね正しく分類 できた.今後は、広帯域 AE センサを用いて、未接着部分の 可視化結果のさらなる高精度化を目指すこと、超音波伝搬 シミュレーション結果で得られた画像を活用した転移学習 等を行う予定である.

参考文献

- 廣瀬壮一:超音波による構造物診断,日本ロボット学会誌, vol.36(3), pp.186-190, 2018.
- 高坪純治, 王波, 劉小軍, 鈴木修一, 王暁東:レーザー超音波可 視化技術の開発と欠陥検出への応用, 非破壊検査, vol.63(3), pp.142-147, 2014.
- 3) T. Saitoh, A. Mori, K. Ooashi and K. Nakahata : Development of a new dynamic elastic constant estimation method for FRP and its validation using the FDTD method, Insight- Non-Destructive Testing and Condition Monitoring, Vol.61(3), pp.162-165, 2019.