砂・洪積砂地盤における防潮壁杭基礎の地震時挙動に関する遠心力模型実験の数値解析

鹿島建設	正会員	○戸田孝史	2, 小林孝彰
電力中央研究所	正会員	石丸真,	沢津橋雅裕
東京電力ホールディングス			及川兼司

1. はじめに

原子力発電所の耐震性検討において,密な砂地盤 や洪積砂の液状化評価の必要性が高まっている.本 研究¹⁾²⁾³⁾では,このような地盤の液状化に対し,要 素試験や模型実験によってデータを蓄積するととも に,数値解析による液状化の影響評価の合理化を目 指している.本稿では,砂・洪積砂地盤の遠心力模 型実験³⁾を対象とした数値解析について述べる.

2. 解析条件

(1)砂・洪積砂の解析物性値

数値解析には、FLIP ROSE 2D (Ver 7.4.4)を用いた. 表1に砂および洪積砂の物性値を示す.砂は、 沿岸部の表層付近から採取した細砂⁴⁾であり、模型 実験での相対密度は約100%である.砂にはマルチス プリングモデルを用い、表2に示す液状化パラメー タを設定した.洪積砂は、実物の乾燥密度、粒度分 布、液状化強度を再現するように配合した人工材料 ¹⁾であり、典型的な砂と比べて以下の特徴を有する.

- ・ 粘着力を有する.(FLIP で液状化パラメータを設 定する場合, c'=0 とする必要がある.)
- ・ せん断弾性係数の拘束圧依存性が低い.
- ・ 減衰定数の上限値が低い.
- ・非排水繰返し中空ねじりせん断試験では、過剰間
 隙水圧比が1に達することなく、供試体にせん断
 帯が形成されて破壊に至る。

液状化強度曲線が、拘束圧によって大きく異なる.
 以上の理由から、従来の方法で洪積砂に液状化パラメータを設定することが困難である.また、模型実験の平均的な拘束圧を想定して液状化パラメータを設定したとしても、水圧上昇、剛性低下を過大に評価してしまい、再現性が低い結果となった.そこで本検討では、洪積砂を非液状化層(液状化パラメータを設定しないマルチスプリングモデル)として扱い、静的強度として表1に示す粘着力と内部摩擦角

中部電力	正会員	中村秀樹
関西電力	正会員	横田克哉

を設定した.また洪積砂の特徴である拘束圧依存性 や減衰の低さについても、同表の通りに反映した.

(2)解析モデル

図1 に遠心力模型実験を対象とした解析モデルを 示す.境界条件は底面を固定境界,砂の側面を周期 境界,洪積砂の側面を鉛直ローラーとした.防潮壁

表1砂・洪積砂の解析物性値

パラメータ			砂	洪積砂	
物理特性	飽和密度	ρ_{sat}	Mg/m ³	2.025	1.926
	間隙率	n		0.377	0.438
変形特性	動せん断弾性係数	G _{ma}	kN/m ²	75778	291152
	体積弾性係数	K _{ma}	kN/m ²	201621	774662
	基準平均有効拘束圧	σ'_{ma}	kN/m ²	100	100
	拘束圧依存の係数	m _G , m _K		0.53	0.13
	ポアソン比	ν		0.333	0.333
	減衰定数の上限値	h _{max}		0.303	0.087
強度	粘着力	c'	kN/m ²	0	48.2
特性	内部摩擦角	φ'	0	40.6	44.2

表2砂の液状化パラメータ

液状化パラメータ		砂	
変相角	ϕ_p	28.0	
液状化の全体の挙動を規定するパラメータ	\mathbf{W}_1	2.91	
液状化の前半の挙動を規定するパラメータ	\mathbf{P}_1	1.00	
液状化の後半の挙動を規定するパラメータ	P ₂	0.60	
液状化強度曲線の下限を制御するパラメータ	C_1	2.47	
液状化の終局状態を規定するパラメータ	S_1	0.005	

図1 解析モデル図(寸法は実物スケール)

キーワード 洪積砂, 液状化, 杭基礎, 遠心力模型実験, 数値解析, FLIP マルチスプリングモデル 連絡先 〒107-8502 東京都港区赤坂 6-5-30 鹿島建設(株) 土木設計本部 原子力土木設計部 toda-takashi@kajima.com は線形平面要素,杭は線形梁要素とした.防潮壁— 地盤間にはジョイント要素を設け,砂のせん断強度 を設定して剥離と滑りを表現した.杭一地盤間には

「杭-地盤相互作用ばね」を設け、三次元的なすり抜けの効果を表現した.解析の時間刻みは0.005秒とし、 地震動は遠心力模型実験の土槽底面の水平・鉛直加 速度を入力した(模擬地震波,0.3Hz でローカット).

3. 解析結果と考察

図2、図3に主な解析結果を示す.なお,解析対象 は前報³⁾のケース d04 である.せん断ひずみの時刻 歴最大値は、防潮壁と杭の周辺、砂と洪積砂の境界 部に多く分布している(図2).水平加速度に着目す ると,洪積砂と砂の境界部では実験値を精度よく再 現しており,洪積砂のモデル化が妥当であることを 示唆している(図3a).一方,一部の砂の自由地盤部 では,密な砂に特有のスパイク状の振幅が再現でき ていない(図3b).砂地盤の過剰間隙水圧比は,自由 地盤部では精度が高いものの,(図3c),杭近傍では 実験より上昇が早い傾向が見られた.フーチング上 端の水平変位は,振幅が僅かに大きいものの再現性 が高い(図3d).また,杭の地中部における曲げひず みの再現性も高いことから(図3e),防潮壁の全体的 な挙動を捉えられていると考える.

4. まとめ

密な砂と洪積砂から成る地盤の遠心力模型実験を 対象に,FLIPマルチスプリングモデルによる解析を 実施した.本検討の条件下では,洪積砂を非液状化 層としてモデル化し,同材料の拘束圧依存性や減衰 を反映することで,地盤および防潮壁の挙動を概ね 再現可能であることが明らかとなった.

謝辞

本論文は、2018~2020 年度原子カリスク研究セン ター共通研究(北海道電力,東北電力,東京電力HD, 中部電力,北陸電力,関西電力,中国電力,四国電 力,九州電力,日本原子力発電,電源開発,日本原 燃)によって得られた成果である。

参考文献

1)沢津橋他:人工材料による模擬洪積砂の液状化特
 性,第56回地盤工学研究発表会,2021

2)沢津橋他:洪積砂の地震時挙動を対象とした遠心 力模型実験,土木学会第76回年次学術講演会,2021 3)加藤他:砂・洪積砂地盤における防潮壁杭基礎の 地震時挙動に関する遠心力模型実験,土木学会第76 回年次学術講演会,2021

4)石丸他:液状化強度の空間的なばらつきが砂地盤の地震時挙動に及ぼす影響,電力中央研究所報告,2021

(出力位置は図1参照)