レイリー散乱光を用いた分布型光ファイバセンサの基礎検討

鹿島建設(株) 正会員 ○今井道男 青鹿弘行 吉村雄一 リテックエンジニアリング(株)

新保 弘 新井淳一 早坂洋太 小柳津悠 ニューブレクス(株) 岸田欣増 山内良昭

川端淳一

永谷英基

1. はじめに

分布型光ファイバセンサは、光ファイバそのものがセンサとし て機能するため、光ファイバ全長に沿った物理変化(ひずみや温 度)を捉えることができる. 網羅的に情報が得られる点だけでな く,小型軽量,長寿命,防爆性などの数多くの特長を活かして, これまでに建設分野をはじめとして展開が試みられてきた.近年, 光学技術やデータ処理技術の進歩によって、これまでにない新た なセンシング技術が具現化されてきた.本稿では、この新しい分 布型光ファイバセンシング技術を用いた基礎実験を通じて、その 基礎的な性能確認を行ったので報告する.

2.3種類の分布型光ファイバセンサ

光ファイバ内に光を入射すると, すべての箇所で散乱光が生じ る(図-1).これらの散乱光は,通信用途においては光信号が減 衰する原因となるが、そのスペクトルには様々な情報が含まれて いる(表-1). ラマン散乱光の強度は温度に依存することから, 温度分布計測に広く利用されている¹⁾. ブリルアン散乱光の波長は ひずみに依存することから, PC ケーブル張力管理 ²⁾などに利用さ れている. レイリー散乱光は, 光の波長よりも小さい粒子によっ て発生するもので、光ファイバを構成する分子のミクロな密度や^{*1} Multi Mode Fiber:光が通るコア径が 50~62.5mm と太く、多種類の思われて振怒吸む取ります。 組成の揺らぎによるものである.この僅かな揺らぎは光ファイバ^{*2 Single Mode Fiber:光が通るコアが9~10 mm と細く,入射した光} ごとに固有のランダムなパターンを有し、与えられたひずみによ って条件を満たす特定の波長のみを反射することとなる. ラマン やブリルアンと異なり、分子振動など動的な現象によるものでは ないため、非常に高い精度でひずみ分布を得られることが大きな 特長である³⁾. また,他散乱光と比較してその強度が圧倒的に大き いため、計測時間の短縮や空間分解能の高度化などが容易である.

3. 検証実験

(1) 実験方法

支間長 2m で鋼板(厚さ 5mm)中央部に変位を加える 3 点曲げ の実験を行った.鋼板表面には光ファイバ心線(外径 0.9mm)を2 本並行に接着剤で全長固定した(図-2).長距離からの計測性能 を検証する目的で、2本の光ファイバのあいだには約250mのボビ ン巻き光ファイバ(延伸部)をつなげている.参照用としてひず *3 Brillouin Optical Timer Domain Reflectometry: バルス光を入射した みゲージを鋼板表面に等間隔で 9 点設置し,段階的に変位Δ *4 Tunable Wavelength Coherent Optical Time Domain Reflectometry:周 (-25~+25mm, 5mm 間隔)を変えながら各計測を行った (表-2).

キーワード:光ファイバセンサ, 歪分布, 変位測定, レイリー散乱 連絡先 〒182-036 東京都調布市飛田給 2-19-1 鹿島建設(株) 技術研究所 TEL 042-489-6264

図-1 光ファイバ内の散乱光

表-1 分布型光ファイバセンサの比較

	ラマン	ブリルアン	レイリー
要因	分子振動	分子振動	粒子
		による音響波	による散乱
原理	強度が温度に	波長がひずみ	強度が密度な
	依存	と温度に依存	どに依存
計測物理量	温度変化	ひずみ変化	ひずみ変化
		(温度変化)	(温度変化)
特徴	 強度の相対的	波長(絶対量)	強度の相対的
	な変化から温	からひずみ変	な変化からひ
	度変化算出	化を算出	ずみ変化算出
	ひずみ影響を	温度影響を受	温度影響を受
	受けない	ける	ける
使用ファイバ	主に MMF ^{*1}	主に SMF ^{*2}	主に SMF

図-2 基礎実験の構成

表-2 計測項目

	ひずみゲージ	BOTDR ^{*3}	TW-COTDR ^{*4}
散乱光		ブリルアン	レイリー
計測点	9 点	41 点	41 点
	250mm 間隔	50mm 間隔	50mm 間隔
空間分解能	50mm	1,000mm	100mm
	(ゲージ長相当)		(最小 50mm)
接続	片端	片端	片端

ときに発生するブリルアン散乱光の波長からひずみ分布を計測 波数を変化しながらパルス光を入射したときに発生するレイリ

ー散乱光スペクトルの変化からひずみ分布を計測

© Japan Society of Civil Engineers

300

200

표 100

(2) 検証方法

ブリルアン(BOTDR 方式),レイリー(TW-COTDR 方式)とも に計測で得られる結果は、周波数変化量である.被覆や内部の光フ ァイバ種類によって、光ケーブルごとにひずみ係数(単位周波数に 対してひずみ変化量を表す係数)が異なるが、ここではひずみゲー ジと光ファイバの計測結果をもとにひずみ係数を決定した.ひずみ ゲージによって得られた計測結果を図-3に示す.このうち、+25mm と-25mm変位時におけるひずみを同位置の2本の光ファイバ計測結 果と比較した結果を図-4に示す.レイリー周波数変化は線形性が 高く、再現性に優れていることがわかる.本結果を線形近似した結 果、ブリルアン、レイリーのひずみ係数はそれぞれ 0.047MHz/µ、 -0.162GHz/µ であった.以降、このひずみ係数を用いて結果をひず み換算のうえ検証する.

(3) 検証結果

得られたひずみ係数を用いて換算したひずみ分布の計測結果を ブリルアン,レイリーそれぞれ図-5および図-6に示す.2本の光 ファイバのうち,250mの延伸部以遠の結果である.両者とも支間 中央部付近を極値とするひずみ分布を示しているが,ブリルアンで みられるばらつきが,レイリーではほとんどみられない.特に100µ 以下のひずみにおいて,三角形状のひずみ分布を明確に示している ことから,レイリーによる高い計測精度が明らかになった.

延伸部におけるひずみ分布の計測結果を図-7 に示す.-15mm 変 位時における 250m 延伸部(ボビン巻)の一部を示したもので,ひ ずみ変化が生じていないことがレイリーで明確に分かる.10m 分の 範囲(150~160m)における計測結果をヒストグラムで図-8に示す. そのばらつき(3σ)は,ブリルアンで 34.2µ,レイリーで 1.8µ で, 後者の計測精度の高さを確認できた.

4. おわりに

基礎的な鋼板曲げ試験において、レイリー散乱光を利用した分布 型光ファイバセンサのひずみ計測精度を定量的に評価した.計測精 度の大幅な向上は、分布型光ファイバセンサの単なる高度化に留ま らず、これまで事後的に検知していた変状を、その予兆を把握でき るなどの点から、同センサの展開を大きく加速する可能性を秘めて いる.引き続き、安全や品質向上に資する施工管理技術への活用に 向け、更なる研究開発を行う予定である.

参考文献

- 永谷英基、山口功、吉田輝:凍土方式遮水壁の光ファイバ式温度計による地中温度計測-凍土方式による遮水技術に関するフィージビリティ・スタディ事業(その6)-、土木学会第70回年次学術講演会、Ⅲ-270、539-540、2015.
- 2) 大窪一正,今井道男,曽我部直樹,戸邉勇人,中上晋志,早川道洋,二 羽淳一郎:光ファイバを用いた引張り力分布計測技術のグラウンドアン カーへの適用,土木学会論文集 A1,76(1),126-138,2020.
- 3) 今井道男ほか:高精度光ファイバセンサを用いたひずみ・変位計測の検 証実験,土木学会第75回年次学術講演会,CS9-28, 2020.

