鉄道総研

正会員 〇浦川

文寛

鉄道沿線樹木等の 3D 形状測定とそのレール温度予測モデルへの適用

1. はじめに

レール温度が過度に上昇すると、圧縮の軸 力により線路が水平方向に張り出す、「軌道 座屈」の危険性が高まる。軌道座屈は脱線に 繋がる重要な問題であるため、レール温度を 予測して精度良く管理することが望まれて いる。図1に示すレール温度予測モデル1)で は、DSM (Digital Surface Model、周辺地物 (地

形、建物、樹木等の総称)の高さを含む標高)データを使用した日射 量解析を行い、レールに入射する熱量を計算することで、日陰を考慮 してレール温度分布を推定することが可能である。都市部では、近年 の仮想空間の利用拡大を背景に、3D都市モデルの整備とオープンデー タ化が進められているが、山間部では市販の DSM データの購入が必 要である。また、山間部の日陰は樹木の影響が大きいと想定されるが、 山間部の DSM データの更新頻度は数年程度であるため、植生の変化 に対応できない可能性がある。そこで本稿では、線路周辺の樹木等の 3D 形状を車上カメラと画像解析技術を用いて簡易に測定し、レール温 度予測モデルに適用する手法を提案する。

2. 沿線樹木等の 3D 形状測定

図 2(a) に示すように、鉄道総研の所内試験線にて試験車両を速度約 30km/h で走行させ、車上カメラにより車両の前方と側方(曲線内側) の周辺地物を連続的に撮影し、市販の SfM 多視点ステレオ写真測量²⁾ ソフトウェア 3DF Zephyr を用いて撮影した画像から 3D 形状モデルを 作成した。さらに、3D形状データを点群データとして出力し(図2(b))、 汎用 GIS ソフトウェア ArcGIS Pro の内挿ツール ³⁾により 1m メッシュ 標高に変換、ジオリファレンスツール 3により緯度経度を付与するこ とで、DSM データに変換した(図2(c))。

3. 3D 形状測定結果を使用したレール温度推定試験

3.1 試験条件

前章の形状測定結果(図 2(c))を用 表 1 いてレール温度を推定し、レール腹部 項目 に設置した熱電対による測定値と比較す レール表面の放射率 る。レール温度の測点は、図2(c)に示す ステファンボルツマン係数 地表面の反射率 点1、点2、点3である。レールはJIS 50kgN 下向き赤外放射 レール、まくらぎは6号PCまくらぎで、 地表面の放射率

キーワード レール温度予測,SfM 多視点ステレオ写真測量,車載カメラ,GIS,日射量解析,軌道座屈 連絡先 〒185-8540 東京都国分寺市光町2丁目8-38 (公財)鉄道総合技術研究所 TEL042-573-7291

解析パラメ

値

頭頂面:0.2

頭頂面以外:0.75

5.67×10-8 W/(m2K4)

0.3

1.2 MJ/(m²h)

0.95

図 2 車載カメラによる沿線樹木の 3D 形状測定と DSM データ変換

値

0.25 W/(mK)

0.007 m

7820 kg/m3

461 J/(kgK)

50 W/(mK)

0.00642 m²

項目

軌道パッド熱伝導率

軌道パッド厚さ

レール鋼密度

レール比熱

レール熱伝導率

レール断面積

<u>2</u>0.4

嗮 本0.2

٥

400

450

Ē

600

2

1

0

400

図 4

450

(a) 法線面直達日射

500

位置x [m]

550

射量

タには点1付近で測定した値(図3)を使用し た。日時は2020年10月29日である。

3.2 試験結果

図4に、日射量解析(ArcGIS Proの"ポイン トの日射量"ツールを使用)を行い、図2(c)の DSM データから算出した日射量分布を示す。

図 4(a) より、点1付近は14時頃に樹木Aの日陰(直達日射がゼロ)となり、 点2付近は8時の時点で樹木B等の日陰となる。また、点3は樹木Bによる 日陰と日向の境界に位置し、8時頃には日向となることが分かる。図4(b)より、 樹木 A と樹木 B、およびその他建物によって散乱日射の一部が遮れるため、 470m<x<600mの範囲では、周囲よりも散乱日射が低下することが分かる。

図5に、点1、点2、点3のレール温度の測定値と比較を示す。図5(a)より、 点1の測定結果では、樹木Aの陰により13時以降でレール温度が低下した。 また、点2と点3は、日出直後(7時頃)暫くは樹木Bにより日陰となるが、 点 2 では日向となる時刻(レール温度が急激に上昇を始める時刻)が 10m 離 れた点3より約1時間遅く、午前中のレール温度が点3より低くなった

(図 5(a))。図 5(b) に、DEM (Digital Elevation Model、建物や樹木等の高さを 含まない地表面の標高モデル)に建物の高さを加算した標高データ(樹木の高 さを含まない)による推定結果を示すが、測定で見られた樹木による温度変化 の傾向は再現できていない。図5(c)より、3D形状測定結果(樹木の高さを含 む標高データ)を用いたレール温度の推定値では、測定値との間で若干の差が 生じたが、上述の樹木A、樹木Bによる影響については測定値と同様の傾向が 得られた。以上より、提案した樹木の形状測定法を適用することで、レール温 度の再現性を向上できることが分かった。

4. まとめ

試験線のレール温度は樹木等の陰により場所毎に差が生じたが、本稿で提案 した 3D 形状測定法を適用することで、これら温度差を含むレール温度の再現 性を向上できることが分かり、提案手法の有効性を確認できた。今後は、3D形 状測定、市販およびオープンデータを活用したレール温度の詳細な予測によ

り、夏季の特別巡回や運転規制等、管理の効率化の検討を行う予定である。

参考文献

- 1) 浦川文寛, 渡辺勉, 木村成克: GIS データを使用した広域レール温度予測法、鉄道総研報 告 – 軌道技術 – , Vol. 34, No. 4, pp. 53-59, 2020
- 2) 織田 和夫: 解説 Structure from Motion (SfM) 第一回 SfM の概要とバンドル調整, 55 巻, 3号, pp. 206-209, 2019
- 3) ArcGIS Pro ジオプロセッシングツールリファレンス(最終閲覧日: 2021 年 3 月 30 日) https://pro.arcgis.com/ja/pro-app/latest/tool-reference/main/arcgis-pro-tool-reference.htm

500

位置x [m]

550

600

図 5 レール温度推定結果