群馬大学大学院

群馬大学大学院

演算子積分時間領域境界要素法を援用した 粘弾性体中のき裂に対する2次元逆散乱解析

1. はじめに

固体中の欠陥の位置や形状を再構成する手法の一つであ る逆散乱解析は、等方性や異方性弾性波動問題に適用¹⁾さ れてきた.しかし、粘弾性波動のような波動に分散性を示す 問題に対する適用例²⁾は未だに少なく、特に、き裂等の境界 型欠陥に対する逆散乱解析は、ほとんど検討がされていな いのが現状である.そこで本研究では、2次元面内粘弾性波 動問題を対象に、粘弾性体中のき裂に対する逆散乱解析の 開発を行う.ここで、逆散乱解析に必要となる散乱波形デー タの取得は、波動解析に有効である時間領域境界要素法に 対し、演算子積分法を適用することでその精度を向上させ た、演算子積分時間領域境界要素法を用いることで行う.以 下では、粘弾性体中のき裂に対する逆散乱解析の定式化を 示した後、簡単な数値解析例を示すことで本手法の有効性 を検討する.最後にまとめと今後の課題を述べる.

2. 解くべき問題

本節では、図1に示すような、2次元無限粘弾性体 D 中 のき裂の位置や形状を推定する逆問題を考える.ここで散 乱波の取得法として、ピッチ・キャッチ法を想定し、原点 O から十分遠方より入射波 $u_i^{in}(x,t)$ を送信し、き裂を取り囲 む円周上に存在する観測点 x において散乱波を取得するも のとする.なお本研究では、き裂より発生する散乱波の縦波 成分と横波成分は分離可能であり、さらに、遠方場近似が適 用出来るという仮定の下、周波数領域において逆散乱解析 の定式化を進める.

3. 粘弾性体中のき裂に対する2次元逆散乱解析 の定式化

さて、2 次元面内粘弾性波動問題における周波数領域での支配方程式は、変位 $\tilde{u}_i(\boldsymbol{x},\omega)$ に対して以下のように得られる.

$$\tilde{\mu}^{*}(\omega)\tilde{u}_{i,jj}(\boldsymbol{x},\omega) + \left(\tilde{K}^{*}(\omega) + \frac{1}{3}\tilde{\mu}^{*}(\omega)\right)\tilde{u}_{j,ij}(\boldsymbol{x},\omega)$$
$$= -\rho\omega^{2}\tilde{u}_{i}(\boldsymbol{x},\omega) \quad \text{in } D \tag{1}$$

ただし, ρ は密度, ω は角周波数, $\tilde{\mu}^{*}(\omega)$, $\tilde{K}^{*}(\omega)$ はそれぞれ 周波数領域におけるせん断弾性係数および体積弾性係数に 対する複素緩和関数であり,(),*i*は空間に関する微分 $\partial/\partial x_i$ を表す.ここで,き裂境界Sにおいて表面力フリーを仮定す ると,2次元面内粘弾性波動問題における散乱波 $\tilde{u}_i^{sc}(\boldsymbol{x},\omega)$ に

学生会員

正会員

〇竹田

斎藤

隆泰

図1 き裂に対する逆散乱解析モデル.

関する積分方程式は、周波数領域において次式で表される.

$$\tilde{u}_i^{\rm sc}(\boldsymbol{x},\omega) = -\int_S \tilde{T}_{ij}(\boldsymbol{x},\boldsymbol{y},\omega)\tilde{u}_j(\boldsymbol{y},\omega)dS_y \qquad (2)$$

ここで, $\tilde{T}_{ij}(\boldsymbol{x}, \boldsymbol{y}, \omega)$ は 2 次元面内粘弾性波動問題における 周波数領域の二重層核である. さて,式(2)の散乱波に関す る積分方程式に対し,遠方場近似を適用し,縦波成分のみを 考慮すると以下の式を得る.

$$\tilde{u}_{i}^{\mathrm{sc}}(\boldsymbol{x},\omega) = -\frac{\mathrm{i}\tilde{k}_{L}B_{ijk}^{L}}{\sqrt{8\pi\tilde{k}_{L}|\boldsymbol{x}|}}\mathrm{e}^{(\mathrm{i}\tilde{k}_{L}|\boldsymbol{x}|+\frac{\pi}{4})} \times \int_{S} n_{k}(\boldsymbol{y})\mathrm{e}^{-\mathrm{i}\tilde{k}_{L}\hat{\boldsymbol{x}}\cdot\boldsymbol{y}}\tilde{u}_{j}(\boldsymbol{y},\omega)dS_{y} \qquad (3)$$

ここで、 B_{ijk}^{L} は、 $B_{ijk}^{L} = -(1-2\kappa)\hat{x}_{i}\delta_{jk} - 2\kappa\hat{x}_{i}\hat{x}_{j}\hat{x}_{k}$ 、 κ は、 $\kappa = \tilde{k}_{L}/\tilde{k}_{T}$ として式を整理しており、 \hat{x} は x の単位ベクト ν 、 \tilde{k}_{L} 、 \tilde{k}_{T} は粘弾性波動問題における周波数領域での縦波 および横波の複素波数、 $n_{k}(y)$ は境界上の点 y における外 向き単位法線ベクトルである. さて、式 (3) では境界 S上 の点 y における未知変位 $\tilde{u}_{j}(y,\omega)$ を含んでいる. そこで、 Kirchhoff 近似では、境界 S上の点 y での未知変位 $\tilde{u}_{j}(y,\omega)$ ε 、スネルの法則の下、入射波の照射面における入射変位 $\tilde{u}_{j}^{in}(y,\omega)$ と反射変位 $\tilde{u}_{j}^{in}(y,\omega)$ の和として近似する. ここ で、本研究では入射波 $\tilde{u}_{j}^{in}(y,\omega)$ は縦波平面波と仮定し以下 のように与える.

$$\tilde{u}_j^{\rm in}(\boldsymbol{y},\omega) = F^v(\tilde{k}_L) \hat{d}_j^{\rm in} \mathrm{e}^{\mathrm{i}k_L \hat{\boldsymbol{p}}^{\rm in} \cdot \boldsymbol{y}} \tag{4}$$

Key Words: 逆散乱解析, 演算子積分時間領域境界要素, 粘弹性波動問題 〒 376-8515 群馬県桐生市天神町 1-5-1

ここで, **d**ⁱⁿ は偏向方向単位ベクトル, **p**ⁱⁿ は進行方向単位 ベクトルであり, $F^{v}(\tilde{k}_{L})$ は粘弾性体中を進行する入射波の 振幅である. さて, Kirchhoff 近似を施した式 (3) に対し, き 裂境界 S でのみ値を有する特異関数 $\gamma(\mathbf{y})$ を導入し, $\mathbf{K} =$ $\tilde{k}_L(\hat{x} - \hat{p}^{in})$ なる K空間において, 入射波の進行方向ベク トル \hat{p}^{in} に対する入射角 ϕ^{in} を用いた変数変換を施した後, 逆フーリエ変換を適用することで特異関数 γ(y) を以下の ように導出することが出来る.

$$\gamma(\boldsymbol{y}) = \int_{0}^{2\pi} \int_{0}^{\infty} \frac{\sqrt{2\pi \tilde{k}_{L} |\boldsymbol{x}|} \tilde{u}_{i}^{\mathrm{sc}}(\boldsymbol{x},\omega) (1 - \cos(\theta - \phi^{\mathrm{in}}))}{\pi^{2} B_{ijk}^{L} n_{k}^{\mathrm{st}} (\hat{d}_{j}^{\mathrm{in}} + \hat{d}_{j}^{\mathrm{ref}}) F^{\upsilon}(\tilde{k}_{L})} \times \mathrm{e}^{-\mathrm{i}(\tilde{k}_{L} |\boldsymbol{x}| - \tilde{k}_{L} (\hat{\boldsymbol{x}} - \hat{\boldsymbol{p}}^{\mathrm{in}}) \cdot \boldsymbol{y} + \frac{\pi}{4})} d\tilde{k}_{L} d\theta$$
(5)

ここで, \hat{d}_i^{ref} は反射波の偏向方向単位ベクトル, n_k^{st} は停留点 における単位法線ベクトル³⁾であり,θは図1に示す偏角で ある. さて, 特異関数 $\gamma(y)$ は, き裂境界 S でのみ値を持つ関 数であるため,式(5)の右辺を精度よく計算することで,き 裂の位置や形状の再構成が可能となる.また,式(5)の右辺 に含まれる周波数領域の散乱波 $\tilde{u}_i^{sc}(\boldsymbol{x},\omega)$ は、演算子積分時 間領域境界要素により得られた時間領域の散乱波 $u_i^{sc}(\boldsymbol{x},t)$ に対し、時間に関するフーリエ変換を行うことで求める.

4. 数值解析例

以下,数値解析例を示す.図1に示すような無限粘弾性 体 D 中に存在する長さ 2a のき裂に対し、入射波を鉛直上 向き ($\phi^{in} = 270^{\circ}$) もしくは下向き ($\phi^{in} = 90^{\circ}$) に送信し, 原点 O から距離 R = 12a 離れ, $\theta = 10^{\circ}$ 刻みで設置され た観測点 x において散乱波を取得する. ここで粘弾性体の モデル化は三要素標準モデルを用いており、以下の解析に おける粘弾性パラメータは、緩和弾性係数と初期弾性係数 の比を $\mu_R/\mu_0 = 0.85$, 体積弾性係数と初期弾性係数の比を $K/\mu_0 = 5/3$, 初期弾性縦波速度 $c_{L0} = \sqrt{(K + (4/3)\mu_0)/\rho}$ に対する時間を $T_0 = 2a/c_{L0}$, 応力緩和時間を $\tau_{\sigma} = 0.5T_0$, ひずみ緩和時間を $\tau_{\epsilon} = 17T_0/40$ と設定した. また, き裂は 20 個の一定要素で分割・離散化し、総ステップ数 N = L = 1024, 時間増分を $c_{L0}\Delta t/a \simeq 0.07$ として与え, 以下の解析 を行った.

図 2 (a) - (d) には, 演算子積分時間領域境界要素により計 算された,粘弾性体中のき裂周辺における弾性波動場 |u|の 可視化結果を示す. 解析結果より粘弾性体中を進行する入 射波がき裂によって散乱され,き裂先端からの回折波を確 認することが出来る.また、粘弾性効果により、入射波およ び散乱波が時間に伴い減衰している様子が確認出来る.

図 3 (a), (b) には, 等方弾性体中および粘弾性体中の長さ 2aのき裂に対し、特異関数 $\gamma(\mathbf{y})$ を空間上にプロットする ことで欠陥形状再構成を行った結果を示す. ここで図3中 の白線は, 実際のき裂の正解位置を表している. 図 3 (a) よ り,等方弾性体中のき裂に対しては、比較的精度よく位置や

図2 粘弾性体中のき裂周辺の弾性波動場 |u| (a) $c_{L0}t/a \simeq 0.35$, (b) $c_{L0}t/a \simeq 0.07$, (c) $c_{L0}t/a \simeq 1.04$, (d) $c_{L0}t/a \simeq 1.39$.

図3 逆散乱解析結果 (a) 等方弾性体中のき裂に対する再構成結果、 (b) 粘弾性体中のき裂に対する再構成結果.

形状の再構成が出来ている. 一方, 図3(b)より, 粘弾性体中 のき裂に対しては、おおよその位置や形状は再構成できて いるものの,き裂先端においてはその再構成精度が落ちて いる事が確認出来る. これは, Kirchhoff 近似が高周波の帯 域において有効な近似であることに対し, 粘弾性体中を伝 搬する弾性波は高周波の成分から減衰することから,その 近似精度が低下することが原因であると考えられる.

5. まとめと今後の課題

本研究では、演算子積分時間領域境界要素を援用した粘 弾性体中のき裂に対する逆散乱解析を行った. 逆散乱解析 結果より,粘弾性効果によってき裂欠陥の再構成精度が低 下することが確認された. 今後は, 粘弾性効果による欠陥形 状再構成精度の検討や、異方性・粘弾性の影響を考慮した 逆散乱解析を行う予定である.

参考文献

- 斎藤隆泰, 稲垣祐生, 下田瑞斗:異方性弾性体中の欠陥に対する2次元逆散乱解析, 非破壊検査, Vol.66(2) (2017), pp. 84–89.
- 竹田晴彦,斎藤隆泰:演算子積分時間領域境界要素法を用いた 粘弾性体中の空洞に対する 3 次元順解析および逆散乱解析, 計 算数理工学論文集, Vol.20 (2020), pp. 1–6. 3) Schmerr, L. W.: Fundamentals of ultrasonic nondestructive eval-
- uation, (1998), Plenum Press.