損傷モデルと結合力モデルの破壊エネルギー等価性に基づく遷移理論

○東北大学大学院工学研究科	学生会員	三浦弘慈
東北大学大学院工学研究科	学生会員	鈴木峻
東北大学大学院工学研究科	学生会員	韓霽珂
東北大学大学院工学研究科	学生会員	山中耀介
東北大学災害科学国際研究所	正会員	森口周二
東北大学災害科学国際研究所	正会員	寺田賢二郎

1. はじめに

有限要素法によるき裂の解析手法は損傷モデルと結合力 モデルに大別され、近年では両者の欠点を補うようなモデ ル間遷移手法の研究が行われている.本研究では新たな遷 移手法として、き裂の発生を損傷モデルで、進展を本論文 で定式化するエネルギー等価性に基づく結合力モデルで解 析することで、エネルギーと力のつり合いをシームレスに 遷移可能な手法を提案する.最後に,提案手法の基本的性 能を一軸引張問題,複雑な破壊への適用を4点曲げ試験の 数値解析例を通して検証し,提案手法が損傷モデルと結合 カモデルをシームレスに遷移可能であることを例証する.

2. 破壊エネルギー等価性に基づく結合力モデル 本研究では、車谷ら1)が提案した損傷モデルで解析を行 ない,損傷変数 D がある閾値 Dcr に達した要素を隣り合う 要素と分離して,要素境界に結合力モデルを挿入する.な お、 $D = D_{cr}$ に達した要素を損傷バルク要素と呼称し、結合 カモデル挿入後は損傷バルク要素の損傷変数を Der に固定 する.このとき,遷移後の結合力モデルは遷移前の損傷モ デルと解析結果が一致するように以下の性能が要求される.

1) 遷移前の損傷モデルと力のつり合いが連続的

2) 損傷モデルと同等のエネルギーを散逸

これを満たす結合力モデルを決定するため、き裂面法線方 向の結合力と開口変位をそれぞれ f, wとおき,表面力-開 口変位関係を以下のように仮定する.

$$\bar{f} = A \exp\left(-B\bar{w}\right) \tag{1}$$

まず,1)に対して,モデル遷移直後の w = 0 のときの結 合力を遷移直前の損傷バルク要素き裂境界上の法線方向応 力と一致させるため、次式のような制約を課す.

$$Ae^0 = f_{\rm cr} \rightarrow A = f_{\rm cr}$$
 (2)

ここに、 f_{cr} は $\bar{w} = 0$ の結合力であり、損傷バルク要素の Cauchy 応力 σ , き裂面上の外向き法線ベクトル n を用いて 次式のように表される.

$$f_{\rm cr} = |\boldsymbol{\sigma}\boldsymbol{n}| \tag{3}$$

次に要求性能 2) について,*D* = *D*_{cr} のときの等価ひずみ

図-1 損傷バルク要素の等価応力-等価ひずみ関係

関係において、損傷バルク要素が遷移以降に解放するひず みエネルギーは面積S1,損傷モデルで散逸するはずであっ たエネルギーは面積 S2 に対応し、これらとエネルギーを整 合させるため,以下の制約を課す.

$$\int_0^\infty \bar{f} \, \mathrm{d}\bar{w} = S_1 + S_2 \qquad \rightarrow \quad B = \frac{f_{\mathrm{cr}}}{S_1 + S_2} \tag{4}$$

以上,式(2),(4)より、本研究で提案するエネルギー等価 性に基づいた結合力モデルの表面力-開口変位関係は次式の ように表される.

$$\bar{f} = f_{\rm cr} \exp\left(-\frac{f_{\rm cr}}{S_1 + S_2}\bar{w}\right) \tag{5}$$

提案手法では、損傷モデルから遷移した後の結合力モデル として、上式の表面力-開口変位関係により算出される結合 力をき裂面境界の要素に作用させる.

3. 数値解析例

3.1 基本性能検証のための一軸引張問題

提案手法の基本的な性能を検証するため、図-2に示す一 軸引張問題に対して閾値 D_{cr} とメッシュサイズを変化させ て解析を行い,損傷モデルの解析結果と比較する.境界条 件および解析パラメータは同図の通りであり、閾値 D_{cr}を 0.8, 0.9, 0.95, 0.99の4通りに, 1要素のサイズを10, 5, 2mmの3通りに変化させる.また、中央部のみにき裂が生 じるように中央部の要素には損傷構成則、それ以外の要素 には弾性構成則を適用する.

図-3、図-4に損傷モデルと提案手法により得られた荷重-変位曲線を示す.実線が損傷モデルの解析結果,マーカー を ε_{eqer} とすると,図–1 に示すような等価応力–等価ひずみ が提案手法で結合力モデルに遷移した後の解析結果を表し

Key Words: 等方損傷モデル,離散ひび割れモデル,結合力モデル,表面力-開口変位関係,破壊エネルギー,等価ひずみ 〒980-8572 仙台市青葉区荒巻字青葉 468-1 災害科学国際研究所 4F S403-S404, TEL 022-752-2132, FAX 022-752-2133

ている. 図-3 からいずれの閾値 *D*_{cr} でも荷重-変位曲線が 十分な精度で一致することが,図-4 からいずれのメッシュ サイズでも荷重-変位曲線が高い精度で一致することが確認 できる. このことから,一軸引張問題に対して,提案手法 はメッシュサイズと閾値 *D*_{cr} に大きく依存せずにシームレ スな遷移が可能であると言える.

3.2 複雑な破壊への適用の検討のための4点曲げ試験

非一様な変形により, 複数箇所で同時にき裂が進展する複 雑な破壊へ適用を検討するため, 図-5 に示すような簡易モ デル化した鉄筋コンクリート供試体に対し, 4 点曲げ試験を 模擬した数値解析を行う.本研究では破壊モード I を想定 して定式化しているため, せん断破壊が支配的となる手前ま でを解析対象とし,モデル中央の上側に y 方向に 0.5 mm の 強制変位を載荷させる.鉄筋とコンリートの解析パラメー タは同図の通りとし,鉄筋は損傷も降伏もしないものと仮 定として弾性構成則を,コンクリートには損傷構成則を適 用する.

図-4 変化させたメッシュサイズとその解析結果

解析結果として,損傷モデルと提案モデルにより得られた裁荷点の荷重-変位曲線を図-6に,変形倍率を400倍にしたき裂の進展性状と損傷変数の分布を図-5にそれぞれ示す.この結果から,提案手法は4点曲げ問題に対して複数のき裂進展を表現した上で,ある程度の精度で損傷モデルの解析結果を再現可能と言える.

4. おわりに

本論文では、損傷モデルから結合力モデルへの遷移手法 を散逸エネルギーに基づき定式化して、シームレスなき裂 の発生・進展解析手法を提案した.提案手法の表現性能を 検証するため、まず、一軸引張問題に対して本手法がメッ シュサイズと閾値 D_{cr} に大きく依存することなく損傷モデ ルから結合力モデルへ適切に遷移できることを示した.次 に、4 点曲げ試験に対して本手法が複数き裂が進展するよ うな複雑な破壊挙動に対しても、十分な精度で解析できる ことを例証した.今後は、せん断変形と動的解析への提案 モデルの適用を検討し、き裂進展後の構造物全体の崩壊挙 動の再現を実施していく予定である.

参考文献

 Kurumatani, M., Terada, K., Kato, J., Kyoya, T. and Kashiyama, K.: An isotropic damage model based on fracture mechanics for concrete, *Engineering Fracture Mechanics*, Vol. 155, pp. 49–66, 2016.

