ダム用コンクリート圧送技術の開発

大成建設(株)土木本部土木技術部ダム技術室 正会員 〇小菅 憲正 (株) アクティオ エンジニアリング本部 土木部 小林 秀之 布施 潤

(株) アクティオ エンジニアリング本部 土木部

1. はじめに

ダムコンクリートは, 骨材最大寸法が 80mm~150mm と大きく, スランプは 5cm 以下と低いことから, クレー ンによるバケット打設が行われることが多い. そのため, 現場条件によっては, 施工効率や安全性に対して不 利になるケースがみられる.そこで、現場条件に適した打設設備の選択肢を増やすことを目的に、ダム用コン クリート(骨材最大寸法 80mm, スランプ 5cm)を圧送可能な、コンクリートポンプを開発することとした.

本稿では, コンクリート圧送技術の開発における段階試験として実施した, 最大骨材寸法 40mm の低スラン プコンクリートの圧送試験について報告する.

2. 圧送技術開発の手順

コンクリート圧送の最終目標は、最大骨材寸法 80mm, スランプ 5cm のダム用コンクリートであるが、ポンプの性能を段階的に確認するため、 最初に骨材最大寸法 40mm, スランプ 5cm のコンクリートを用いて圧送 試験を実施した.一般にコンクリートポンプの性能は、圧送ポンプ(ピ ストン) ヘコンクリートを引き込み,圧送管 30m のコンクリート圧送が できれば、同条件(コンクリート配合、配管径等)において、それ以上 の距離の圧送は可能といわれている. そのため, 配管長 30m で圧送試験 を実施してポンプの性能を確認した後に,100mの長距離圧送を行う計 画とした. 開発のフローを図-1に示す.

3. ポンプの選定とホッパの改良

コンクリートポンプには、シールドの掘削土砂の運搬で実績のある 大口径ポンプを適用することとし、Klein製のピストン径250mmの圧送 ポンプと油圧ユニットを使用した.また,コンクリートの受入ホッパは, 最大骨材寸法 80mm の骨材がコンクリートの動きを妨げないように幅を 広く緩勾配とし、S管移動部分にはゴムを配置して骨材が噛み込みにく くするなどの工夫を行った. 圧送管には、継手部の管内に段差のできな い ZX 管を使用し、管径は 200mm とした.

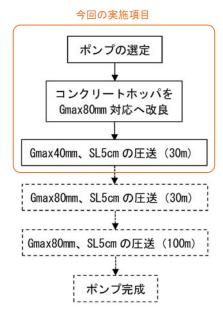


図-1 ポンプ開発フロー図

写真-1 コンクリート圧送ポンプ

【改良】 ①80mm の骨材が逃げやすいように、ホッパの幅を広げ緩勾配 ②80mm の骨材が噛み込まないように、S 管移動部にゴムを設置 ③80mm の骨材を送りやすくするため、アジテータを改良

写真-2 改良コンクリートホッパ

キーワード ダム用コンクリート,ポンプ,低スランプ

連絡先 〒163-0606 東京都新宿区西新宿1丁目1-25-1(新宿センタービル) 大成建設(株) TEL03-5381-5282

4. コンクリート圧送試験

ダム用コンクリートの多くはフライアッシュセメントを使用するが、今回の試験におけるコンクリートの製造はレディミクストコンクリート工場であったため、普通ポルトランドセメントを使用することとした.配合試験により決定したコンクリートの配合を、表-1に示す.

圧送試験は配管長を30mとし、途中に曲がり管を3箇所設置した.ポンプの設置はコンクリートをピストンへ引き込み易くするため、ピストン側が低くなるように3%の勾配を設けた.試験では先送りモルタルの圧送後に、コンクリートを圧送した.圧送試験の機械配置図を、図-2に示す.

5. 試験結果

試験現場到着時のコンクリートの性状は、スランプ 4.5cm, 空気量 5.7%であった. スランプが低く、アジテータトラックからの荷降ろしには人力を必要とする状況であったが、受入ホッパからポンプへのコンクリートの引き込みは問題なく機能した. コンクリートの圧送は、ポンプへのコンクリート引き込みが順調であったこともあり、閉塞することなく 30m を圧送することができた. また、油圧ユニットへの負荷も確認されなかった.

表-1 コンクリート配合表

粗材 最寸 (mm)	スランプ (cm)	空 気 量 (%)	水 結合 材比 W/C (%)	細骨材率 s/a (%)	単位量(kg/m³)					単位量	
					水 W	普通 ポルト ラント セメント C	細骨材S	粗骨材G		AE減	
								40mm ~ 20mm	20mm ~ 5mm	水剤 (kg/m³)	AE剤 (kg/m³)
40	5. 0 ± 1. 0	5. 0 ± 1. 0	48. 9	42. 0	137	280	756	574	574	3. 36	0.3

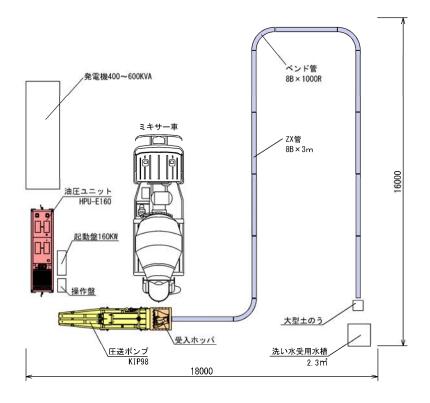


図-2 コンクリート圧送試験機材配置図

写真-3 コンクリート圧送試験状況

写真-4 コンクリート荷降ろし状況

6. まとめ

今回の試験では、最大骨材寸法 40mm, スランプ 5cm の低スランプコンクリートのポンプ圧送性を確認した. 最大骨材寸法が小さいコンクリートではあったが、低スランプで硬いコンクリートの圧送が可能であることを確認できた. 今後は、試験フィールドをダム現場に移し、最大骨材寸法 80mm, スランプ 5cm のコンクリートの圧送試験を実施する.