光学的計測法を用いたコンクリートの内部ひび割れの定量化

長崎大学大学院 学生会員 江頭 優 長崎大学大学院 正会員 山口 浩平 富士フイルム株式会社 非会員 吉田 那緒子・勝山 公人

1. 背景および目的

コンクリートのうきは、図1に示すように、鉄 筋が腐食し体積膨張することによってひび割れ が進展し、発生することが知られている.また、 適切な補修がされていない場合など、補修部がう いているという再劣化の事例が多く確認されて いる^{1,2)}.写真1に実橋梁に生じたうきとはく離 の状況を示す.この再劣化は、橋梁は雨水や塩分 飛来といった腐食環境に加え、車両の通行による 繰返し荷重を起因とした疲労環境に置かれてい るにも関わらず、両者を同時に作用させたうきの 発生メカニズムに関する研究がほぼ皆無である ことが理由の一つとして考えられる.

そこで本研究では、腐食と疲労の両作用を同時 に作用させることができる複合劣化試験装置を 用いて、実橋梁にうきが発生する複合劣化環境を 再現する.ここで、医療分野で利用されているコ ンピュータ断層撮影法(以下,CTとする)によっ て得られるコンクリート内のひび割れなどの内 部情報と、打音検査や既存の非破壊検査技術から 得られる外部情報を比較することで、うきの発生 メカニズムを解明する.本研究の最終目標は、う きの発生メカニズムの解明によって、新たな非破 壊検査技術と効率的な維持管理維持管理手法を 提案することである.本論文は、先述の内部情報 と外部情報の相関を見出すための各計測手法に ついて個別に検討した.

2. CT による内部情報の計測

内部で進展するひび割れの幅を定量的に評価 することを目的として, RC はりの疲労試験を 行った. 図2に RC はりの概略図を示す. 試験 は3点対称載荷とし,実験変数は角掛らの研究結 果³⁾を参考に載荷速度を5Hz,載荷荷重幅(下限 荷重~上限荷重)を静的載荷実験より得られた降 伏強度 Py(13kN)を基準にして,0.1 Py(1.3kN)~ 0.9 Py(11.7kN)で実施した.載荷1万回以降は5万 回ごとに CT でコンクリート内のひび割れの進展 状況を計測して,破壊に至るまで計10回計測した.

写真1 損傷写真

(b) はく離

(a) うき

キーワード うき,非破壊検査,コンピュータ断層撮影法,赤外線法 連絡先 〒852-8521 長崎市文教町1-14 長崎大学大学院工学研究科構造工学コース TEL095-819-2591 図 3 に載荷回数毎のひび割れ幅の内部情報と 外部情報の相関を示す.ここで,内部情報とはコ ンクリート内部に生じているひび割れ幅の諸値 で,外部情報はコンクリート下面に発生したひび 割れの最大幅を指す.これより,CTから計測し た下面のひび割れ幅と,コンクリート内部のひび 割れ幅の平均値および中央値は,強い正の相関が 確認された.このことから,同図の平均値の原点 を通る回帰直線に着目すると,外部で確認された ひび割れ幅の約 1.2 倍の幅のひび割れがコンク リート内部に発生していると予想することがで きる.

3. 赤外線法による外部情報の計測

赤外撮影によって計測したコンクリート表面 温度から、コンクリート内部の欠陥の形状や深さ の推定の可能性について検討した. 試験はアク ティブ法を採用し、供試体表面を 40 分加熱し、 加熱 10 分間は 1 分間隔,以降は 2 分間隔で赤外 カメラによるコンクリート表面温度の計測を 行った. 図 4 に供試体の概略と、図中の赤線位置 について、加熱 10 分以降の 2 分毎の温度上昇量 を計測し、その平均値を示す. 図中の緑で示す位 置に厚さ 1mm のスチレンボードを埋設し、コン クリート内のうきを誘発するひび割れを模擬し た.

図4(a)より、内部に模擬欠陥がない場合、表面 の温度上昇量は概ね一定であることがわかる.温 度上昇が一部確認されるのは、コンクリート表面 の凹凸により均一な入熱ではなかったことが考 えられる.同図(b)より、欠陥箇所の温度が上昇し ており、欠陥が水平にある場合、その中央の温度 上昇量が最大となると考えられる.同図(c)も同様 に欠陥箇所の温度が上昇しているが、欠陥が斜め にある場合、欠陥深さが深いほど温度上昇量が小 さいことがわかる.同図(d)より、欠陥が円錐状に ある場合、欠陥が水平や斜めの場合の温度上昇と 傾向が異なるが、斜めに模擬欠陥を埋設した場合 の結果を同図(d)のように V 字に反転し足し合わ せると、同様の傾向となった.

4. 今後の展望

本研究では, CT と赤外線法について個別に検 討を行った. CT に関しては, 母数が少なく相関 がみられない値もあったため,よりデータの蓄積 が必要である.赤外線法に関しては, 同条件での 熱解析を行い, 実験結果の妥当性について検討を 行う.

参考文献

- 1) 元売正美, 里隆幸, 岸利治: コンクリート構造物の補 修後の再劣化に及ぼす各種要因の影響, 土木学会第58 回年次学術講演会, Vol.109, pp.217-218, 2003.9.
- 2) 松村隆爾,杉崎光一,鎌田敏郎,松田浩:コンクリートひび割れおよび剥離・剥落の点検技術の評価に関する研究,土木学会論文集 F4, Vol.72, No.3, pp.73-83, 2016.9.
- 3) 角掛久雄,上田真彦,鬼頭宏明,大内一:曲げ降伏型 無せん断補強筋 RC 梁の疲労寿命に及ぼす載荷条件 の影響,コンクリート工学年次論文集,Vol.34, No.2, pp.73-83, 2012.