渦流探傷によるレール微小き裂検知の現地試験

1. はじめに

シェリング傷の発生を抑制するには、レール表層部に 形成される転がり接触疲労層をレール削正により除去す ることが有効である。JR 西日本の在来線においても、シ ェリング傷の発生傾向の分析結果をもとに、線区毎の特 徴を反映した周期に従って定期的なレール削正作業を実 施して、シェリング傷の発生抑制を図っている¹⁾。

一方で、レール表層に実在する初期段階のき裂を定量 的に把握したうえで除去する方が極めて有効であること から、渦流探傷によるレール表層部の微小き裂検知性能 についての検証を行い、レール交換後の経年レールに対 する渦流探傷試験で表層に実在する微小き裂の検知可能 性を確認している²。

今回は、営業線における敷設レールのき裂検知性能の 検証を目的として、営業線における連続測定で微小き裂 を検知した箇所のレール状態を詳細に調査した結果につ いて、報告する。

2. 営業線における渦流探傷試験

(1) 試験方法

営業線における渦流探傷試験は、専用に製作した手 押し式の架台に渦流探傷装置を搭載し、プローブを架台 に対して一定の高さに固定した状態で測定を実施した

(図 1)。なお、プローブは金属材料の疲労損傷検査用の幅 5mm のプローブを使用し、レールの照り面中央を 測定するように配置して測定を行った。

図1 現地測定の状況

(2) 試験内容

測定はいずれも直線の明かり区間でシェリング傷が 存在し、微小なき裂の存在が有力と想定される表1の区 間で実施した。なお、渦流探傷の基準感度調整は、レー ル削正で対処可能な深さ0.3mmと検知箇所の表面確認

西日本旅客鉄道株式会社	正会員	○鶴房	佑樹
西日本旅客鉄道株式会社	正会員	井上	拓也
西日本旅客鉄道株式会社	正会員	高尾	賢一

作業を考慮し、人工の基準き裂(長さ5.0mm、幅 0.25mm、深さ0.3mm)で信号電圧2.0Vとなるように調 整したうえで現地測定を実施した。

現地測定では、渦流探傷を実施して信号電圧 2.0V 以 上の反応を示した箇所について、目視や蛍光磁粉探傷等 によりレール表面のき裂有無を調査した。

表 測定区	Ë
---------	---

測定区間	1)	2	
線名	山陽本線	湖西線	
線形	直線	直線	
軌道構造	有道床	有道床	
年間通過トン数	2000 万トン	1400 万トン	
累積通過トン数	8.1 億トン	5.9 億トン	
延長	200m	666m	

3. レール内部のき裂確認

(1) 目的

現地測定で微小き裂の存在可能性を確認した箇所について、金属組織観察でレール内部のき裂有無を確認する ことにより、現地測定における微小き裂検知可能性を検 証することとした。

(2) 実施内容

渦流探傷試験の検知箇所の中から9箇所を選定し、レ ール内部のき裂確認を行った。対象箇所は、基準感度と した信号電圧2.0V以上の箇所を基本として選定した。な お、渦流探傷ではレール溶接部や踏みきず等のき裂以外 でも反応を示すが、これらは目視確認結果及び渦流探傷 波形の特徴により対象箇所から除外した。

金属組織観察は、検知箇所を中心に試料を採取して鏡 面研磨を施したうえで、き裂の有無及びき裂の寸法を光 学顕微鏡により観察した。

(3) 確認結果

対象とした9箇所の調査結果を表2に示す。レール内 部のき裂有無を確認した結果、7箇所でレール内部にき 裂が確認され、2箇所は確認されなかった。

表2における渦流探傷の信号電圧とき裂深さの関係を 図2に示す。信号電圧2~3Vの箇所で深さ0.3mm 程度、 4V以上の箇所で深さ0.6mm 程度のき裂が確認されてお り、概ね信号電圧が大きいほど内部のき裂は深い傾向に あった。本取り組みでは、レール削正で除去可能な程度 のき裂(深さ0.3mm 程度)の検知を目的としており、今

キーワード レール削正、渦流探傷、転がり接触疲労、シェリング傷、金属組織観察 連絡先 〒532-0003 大阪市淀川区宮原 4-3-39 西日本旅客鉄道株式会社 近畿統括本部施設課 TEL 06-7668-7071 回の基準感度 2.0V で検知可能であることを確認した。

なお、一部傾向が異なる関係にあるものは、渦流探傷 の信号電圧が、き裂深さの他にも、き裂長さや角度、測 定プロープとき裂との位置関係等によっても変化するた めであると考えられる。

我2 レ 70F 1000 C 我唯心和本						
No.	測定	渦流探傷	蛍光磁粉	レール内部の		
	区間	信号電圧(V)	探傷	き裂深さ(mm)		
1		6.5	き裂確認	0.01以下		
2		4.2	き裂確認	0.62		
3	\bigcirc	3.8	剥離確認	0.10		
4		3.1	き裂確認	0.33		
5		2.1	き裂確認	0.12		
6		5.2	き裂確認	0.63		
7	0	2.4	き裂確認	0.33		
8	4	1.8	き裂確認	内部き裂なし		
9		1.7	判別不可	内部き裂なし		
- 小型(mm) - 小型(mm) 	.0 .1 .2 .3 .3 .4 .5 .6 .7	A 裂なし ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	● ● ● ● ● ● ● ● ● ● ●	● J正可能目安深さ 3mm 程度 ● ● ● ● ● ● ● ● ● ● ● ● ●		
0.0		2.0	4.0	6.0 8.0		
	信号電圧(V)					

表2 レール内部のき裂確認結果

図2 信号電圧とき裂深さの関係

狙いとした深さ 0.3mm 程度の微小き裂を対象とした 確認結果の一例として、検知箇所 No.4 における渦流探 傷の波形を図 3、蛍光磁粉探傷を図 4、レール内部のき 裂確認を図 5 に示す。金属組織観察の結果、このき裂は レール表層付近から内部に進展しているものであると考 えられ、き裂深さは 0.3mm 程度に達していた。また、 他の試料の調査結果においても同様に表層から内部に進 展するき裂を確認している。

シェリング傷の形成過程は、レールの極表層の接触疲 労による初期き裂からシェリング傷に至ると考えられて おり³⁴⁴、今回の測定結果は形成過程のうち初期段階を捉 えているものと考えられる。

なお、レール内部にき裂を確認できなかった2箇所に ついては、き裂が極めて小さいために断面観察位置がき 裂位置から外れている可能性や、人工き裂のように単一 のき裂ではなく目視での判別が困難なほどに極めて小さ いき裂が複数存在している可能性が考えられる。

図4 蛍光磁粉探傷の一例(No.4)

図5 レール内部のき裂確認の一例 (No. 4)

4. おわりに

営業線における渦流探傷試験及びレール内部のき裂確 認を実施した結果、渦流探傷によりレール表層に実在す る削正可能な程度の微小き裂を検知可能であることを確 認した。

この知見の活用により、シェリング傷の初期段階であ る微小き裂の分布状況を把握したうえで、最適なレール 削正計画を策定できる可能性がある。今後は、実用化に 向けて定量的評価手法の確立等を行う予定である。

(参考文献)

- 1) 今井啓貴,高尾賢一; JR西日本(在来線)における最適なレー ル削正手法の検討,日本鉄道施設協会誌,2017.12
- 2) 井上拓也,高尾賢一,松井元英;渦流探傷によるレール表層部の微小き裂検知に関する検証,鉄道工学シンポジウム,2020.4
- 3) 松山晋作; レールの癌シェリングを斬る, RRR, Vol.44, No.5, 1987.5
- 石田誠,阿部則次;レールシェリング対策, RRR, Vol.70, No.11, 2013.11