コンクリート供試体における多段型掘削機の掘削性能に関する基礎的研究

呉工業高等専門学校 学生会員 〇宮永 渚生 呉工業高等専門学校 フェロー 重松 尚久

1. はじめに

近年では、高度経済成長期に建てられた建物の解体作業が増加している.現在では、発破工法や打撃工法が多く の解体作業で採用されている.しかし、このような工法は騒音や振動問題により採用できないケースも増えてきて いる.そこでカッタを押し付け破壊する掘削方式で、騒音や振動問題を軽減することが期待されている端面掘削方 式に着目した.平面掘削方式とは、1自由面にカッタを押し付けるような掘削方式である.一方端面掘削方式とは、 平面掘削が起こった後に複数の自由面を作り岩盤の端部を削孔する方式である.端面掘削方式には平面掘削方式に 比べ掘削効率の向上、カッタの摩耗の減少、比エネルギーが約 1/10 に減少する¹⁾ことが明らかになっている.本研 究の目的は、騒音や振動問題などの厳しい環境問題を十分に満足し効率的に掘削ができる多段型モデル掘削機を考 察し、実用化に向けた指針を提供することである.

2. 実験について

実験では、ディスクカッタビットを用いた新たな多段型モデル掘削機を作り連続的に実験を行った.図1にモデル掘削機の概略図を示す.モデル掘削機は4枚のディスクカッタで構成されており、内側からカッタA,B,C,D と定義する.掘削方式としては、まずカッタA,Bが同時に当たり(1段階),1段階の中で芯取れを発生させる.そ

の芯取れ付近の 15 mm 掘削後に, カッタ C が当たり(2 段階), 8mm 掘削後にカッタ D が当たる(3 段階), 計 3 段階掘削する 仕組みになっている. 芯取れとはディスクカッタビットによ って亀裂が繋がり岩片が剥離する現象である.既往の研究 2)に よりモデル掘削機のカッタの配置間隔の改良が行われ芯取れ が必ず起こるように設計されている.供試体については,一軸 圧縮強度 47.7N/mm², 高さ 172mm, 直径 370mm で硬化後約 20℃で90日間水中養生を行ったコンクリート供試体を使用し た.図2に実験装置の概略図を示す.実験では時間あたりの掘削 深さ z を一定にして掘削する変位制御で実験を行った.実験中 では実験装置を横転させた状態で行い、ターンテーブルに据え 付けられた供試体を 2r.p.m で回転し,モデル掘削機を一定の速 さで押し当て、カッタ接触から掘削深さ z=35 mm に到達するま で掘削した.一定の貫入量を設定するウォームジャッキによっ て,設定速度 Vsetを5パターン設け調整した.実験は5パターン の設定速度 Vsetごとに3回ずつ行った.また本実験では、モデル 掘削機の掘削に必要な荷重を把握するために一定の変位を与え て掘削する変位制御実験を行った.掘削深さ z に対する垂直力 Fz, トルク T を測定し比較や検討を行い,後に行う荷重制御実 験での応用の可否を考察した.

図2 実験装置の概略図

3. 掘削深さzとの関係

本編では最遅の設定速度 V_{set}=0.00223mm/sec の結果を例に考察する.図3に垂直力 F_zと掘削深さzの関係,図4 キーワード 多段型掘削,変異制御,端面掘削方式,ディスクカッタビット 連絡先 〒737-8506 広島県呉市阿賀南2丁目2-11(重松研究室) TEL0823-73-8400 にトルク Tと掘削深さ z の関係を示す.1段階では,1段階が 終了する掘削深さ z が 15mm に到達するまでには垂直力 F_z が 徐々に上昇し,それ以降 1 段階目が終了する掘削深さ z が 15mm に到達するまでは大きな垂直力 F_z の上昇はなかった.2 段階目では剥離が大きい初期端面掘削が始まり,垂直力 F_z が 急激に上昇している.その後掘削深さ z が 20mm 付近に到達 すると,垂直力 F_z が急激に減少している.ここでは垂直力 F_z が急激に減少しているタイミングで芯取れが起こっていた. 芯取れが起こることにより力の開放が起きたと考える.その 後剥離が小さい定常端面掘削が起こった際に,垂直力 F_z の値 は上昇していた.3段階目でも2段階目と同様な傾向が見られ た.トルク Tと掘削深さ z の関係も同様な関係がみられた.

4. 掘削段階ごとの関係

図 5 に掘削段階ごとの最大垂直力 F_{zmax} ,図 6 に掘削段階ご との最大トルク T_{max} を示す.最大垂直力 F_{zmax} の取り方として は、図 3,4の掘削深さ zに関係のグラフから掘削段階ごとに最 大の範囲を抽出して 10 秒間の平均値を最大垂直力 F_{zmax} とし、 いる.掘削段階ごとでの比較を行うと,掘削段階が増えるごと に最大垂直力 F_{zmax} の差が大きくなるようにみられた.また設 定速度 V_{set} ごとでの比較を行うと,1,2段階目では設定速度 V_{set} が大きくなるにつれて最大垂直力 F_{zmax} も大きくなっていた. 最大トルク T_{max} に関しても最大垂直力 F_{zmax} と同じような傾向 がみられた.

5. 荷重の設定について

変位制御において,各掘削段階での設定速度 V_{set}ごとに作用 した垂直力 F_zを平均値化することにより,荷重の設定が可能 となった.今後行う荷重制御実験では,掘削段階ごとにそれぞ れ3つの設定荷重を設け実験を行う.

6. 結論

 掘削深さ z との関係について、垂直力 F_zは剥離が大きな 初期端面掘削では徐々に増加し、芯取れが起きたタイミン グで垂直力 F_zは急激に減少することが分かった。その後、 再び垂直力 F_zが増加することで剥離が小さな定常端面掘 削に移ることが確認された。また、トルクTについても同 様な傾向がみられた。

2. 変位制御については、どの設定速度 V_{set} についてもグラフ は同様な傾向がみられ予想が可能である. 今後行 う荷重制御実験では、掘削段階ごとにそれぞれ3つの設定荷重の設定が可能となった.

参考文献

- Snowdon,R.A. Ryley,M.D. and Temporal,J. A study of disc cutting in selected British rock. Int. J. of Rock Mech. Min. Sci. & Geomech. Abstrs., 19, 107-121, 1982.
- 2) 河相拓真,重松尚久,小田登:室内実験における TBM センターカッタビットの配置間隔に関する基礎的研究, 令和元年度建設施工と建設機械シンポジウム論文集・梗概集,pp.43-46,2019.