セメントを用いない硬化体のボックスカルバートへの適用に関する研究(その2)

日本ヒューム株式会社	正会員	畑	実
東京都下水道サービス株式会社		杉本	、克美
東京都下水道サービス株式会社		林	悦朗
足利大学	正会員	宮澤	伸吾
日本ヒューム株式会社	正会員	〇井川	秀樹

1. はじめに

プレキャストコンクリートによるボックスカルバートを製作し¹⁾,その耐荷力を確認した。本研究では, IBPM を用いたボックスカルバート(以下 IBPMBOX)と普通コンクリートによるボックスカルバート(以下 RCBOX)の材料物性値と発生応力を比較検討することで,IBPM ボックスカルバートへの適用性を検討した。

2. 実験概要

2.1. 試験方法

2.1.1. 外圧試験

ボックスカルバートの形状図, コア採取位置および配 筋図を図1と図2に示す。ボックスカルバートの外圧試 験方法は日本下水道協会規格に準拠した。図1に示す ように試験体の頂版の引張側(内面側)の変位量を2か 所, 頂版の内面側と, ハンチの両側壁の外側のコンクリ ートひずみをそれぞれ5か所測定した。ひび割れは目 視観察し, 荷重はひび割れ発生後, 試験機の荷重が上 昇しない時点を破壊荷重とした。

3. 実験結果

3.1. ボックスカルバートの耐荷力

ボックスカルバートの外圧試験結果は、表1にひ び割れ荷重と破壊荷重を示した。ひび割れ発生荷重は, ひび割れ幅が目視で確認できる0.05mm程度の発生時 とした。表中のひび割れ規格荷重は,日本下水道協会 規格(JSWAS A-128)に準じた。なお,破壊荷重は,たわ みは大きくなるものの試験機の荷重がこれ以上載荷上 昇しない時点を破壊とし,規格値は無いため参考値とし て示した。今回製造したボックスカルバートは,両試験体

表 1	ひび割れ荷重と破壊荷重
-----	-------------

試験体	ひび割れ規格荷重	荷重 ひび割れ荷重		比率	破壊荷重
No.	(kN/m)	(kN/本)	(kN/m)	/規格)	(kN/m)
IBPMBOX	66.7	191.9	96.2	1.44	399.4
RCBOX		193.3	96.9	1.45	392.0

キーワード:フライアッシュ,高炉スラグ微粉末,ボックスカルバート,ひずみ,ひび割れ荷重,破壊荷重 連絡先:〒360-0161 埼玉県熊谷市万吉 3300 日本ヒューム株式会社 TEL:048-536-5431 FAX:048-536-6609 共にひび割れ規格荷重を大きく超え,その発生荷重は ほぼ同等であった。

3.2. 頂版内面の変位量

上載荷重による頂版内面の変位量について, 横軸の 変位量 2mm までを図3に示す。なお, 変位量は2箇所 で計測し, その平均値を示している。また, ひび割れ発 生時の変位は共に 0.55mm 程度であった。それぞれの 試験体は上載荷重に対してほとんど同じ挙動を示した。 3.3. 頂版内面側のコンクリートひずみ

頂版内面側のコンクリートひずみを図4(IBPMBOX) と図5(RCBOX)にそれぞれ示す。両図において、曲 げひび割れ発生時のコンクリートひずみは、両者ともに おおむね100×10⁶程度であり、IBPMはOPCと同等の 伸び能力を有していると考えられる。IBPMBOX、 RCBOX 共に、ひび割れが目視確認できるまでの荷重 においては、頂版内面のコンクリートに発生するひずみ は、ほぼ同一の傾向を示した。

3.4. 頂版鉄筋のひずみ

頂版内部の鉄筋に発生した内鉄筋,外鉄筋のひず みを図6(IBPMBOX)と図7(RCBOX)にそれぞれ 示す。頂版の鉄筋に発生したひずみも,発生ひずみの 幅に多少の違いは見られるものの,ほぼ同一の傾向 を示した。

4. まとめ

- 1)外圧試験結果を踏まえると、IBPMBOXとRCBOX は共に下水道協会規格を満足し、双方のひび割れ 荷重と破壊荷重は同等の値が得られた。
- 2) 外圧荷重に対する変位量は、IBPMBOXとRCBOX は共に上載荷重に対してほとんど同じ挙動を示した。
- 3) 外圧荷重によって部材に発生する応力は,部材内 部の鉄筋ひずみも含め IBPMBOX と RCBOX は共 に同様の傾向を示した。このため,設計基準強度 が同一であれば, IBPMBOX は従来の鉄筋コンク リート部材としての設計ができるものと考えら れる。

参考文献

 加実,他:セメントを用いない硬化体のボックスカルバートへの 適用に関する研究(その1),令和3年度土木学会全国大会第76 回年次学術講演会講演概要集,2021.9(発表予定)

図5 頂版内面に発生したひずみ (RCBOX)

図 6 頂版の鉄筋に発生したひずみ (IBPMBOX)

図7 頂版の鉄筋に発生したひずみ (RCBOX)