配合の異なる超高強度コンクリートの機械的性質に関する研究

浅野工学専門学校 正会員 〇殿廣 泰史 浅野工学専門学校 正会員 加藤 直樹

1. まえがき

近年,100 N/mm²以上の高強度コンクリートに大きな関心がもたれ,特殊な混和材(剤)との併用により比較的容易に製造可能となっており,コンクリート技術の革命といえる。かくして,構造材の高強度・高耐久化が可能となっている。本報では,超高強度コンクリート作製用の材料を用い,目標の強度を容易に得られるための配合表の作成を目指し,配合比の異なる9種のコンクリート供試体について,圧縮強度および,各弾性係数について比較を行った。

2. 実験概要

2.1 使用材料 セメント: D 社製 超高強度用(普通ポルトランドセメント、高炉石こう系混和材、シリカフュームのプレミックスタイプ) $ho_{c}=2.99 g/cm^{3}$

細骨材:山梨県大月市産 安山岩砕砂 $\rho_s=2.63$ g/cm³

粗骨材:東京都青梅市産 硬質砂岩砕石(2005)

 $\rho_{\rm g} = 2.65 \,{\rm g/cm^3}$

混和剤:P社製 超高強度用高性能減水剤

(主成分:ポリカルボン酸エーテル化合物)

P 社製 空気量調整剤

(主成分:ポリアルキリングリコール誘導体)

2.2 配合表 表 1 に, 本実験で用いた 9 種の配合および設計基準強度(材齢 28 日)を示す。

表 1 配合一覧

W/C (%)	C/W	単位量 (kg/m³)					設計基準
		W	С	S	G	Ad	強度 (N/mm²)
50	2.00	150	300	1074	905	1	95.5
45	2.22	150	333	1044	904	0.194	97.4
40	2.50	150	375	1007	903	1.296	100.6
35	2.86	150	429	958	900	2.713	104.3
30	3.33	150	500	896	896	4.576	109.1
25	4.00	150	600	807	890	7.200	116.0
20	5.00	150	750	675	881	11.136	126.3
18	5.56	150	834	601	875	13.340	132.4
15	6.67	150	1001	458	860	17.696	143.4

2.3 供試体作製 練り混ぜについては強制 2 軸ミキサーを使用した。十分に練り混ぜした後,ただちにスランプフロー試験,空気量試験,コンクリート温度を測定した。コンクリートの潜在強度をみるため,空気量が顕著(目安として1.5%超)にみられた場合は,空気量調整剤を所定量添加し十分に手練り後,再度空気量を測定した。その後型枠に打設,テーブルバイブレーターで十分に締固めを行い,供試体を作製した。作製した供試体は, φ 100×200mmの用柱供試体および,100×100×200mmの角柱供試体である。

2.4 圧縮載荷に伴う静弾性係数試験 円柱供試体 および角柱供試体にひずみゲージを貼付け,圧縮載 荷試験に伴い,静弾性係数を計測した。算出については JIS A 1149 に基づき以下のとおりとする。

$$E_S = \frac{S_1 - S_2}{\varepsilon_1 - \varepsilon_2} \tag{1}$$

ここに, E_s:静弾性係数 (N/mm²)

S₁: 最大荷重の 1/3 に相当する応力度 (N/mm²)

S₂: 縦ひずみ 50×10⁻⁶ のときの応力度 (N/mm²)

 $\varepsilon_1: S_1$ の応力によって生じる縦ひずみ

 $\varepsilon_2: 50 \times 10^{-6}$

2.5 **圧縮載荷に伴う動弾性係数試験** 角柱供試体 にひずみゲージを貼付け,圧縮載荷時の荷重 100kN ごとに,超音波伝播速度を測定し,動弾性係数を計測した。算出については以下のとおりとする。

$$V = \frac{l}{T} \quad (2) \quad \Rightarrow \& U \quad \mu = \frac{\varepsilon_t}{\varepsilon_c} \quad (3) \quad \& \emptyset \,,$$

$$E_d = \frac{\rho \cdot V^2 \cdot (1 + \mu)(1 - 2\mu)}{1 - \mu} \quad (4)$$

ここに, V: 伝播速度 (km/s), l: 伝播距離 (mm)

T: 伝播時間 (µs), E_d : 動弹性係数 (N/mm²)

 ρ : 供試体密度 (kg/m³), μ : ポアソン比

 ε_c : 各伝播速度測定時点の縦ひずみ

ει: 各伝播速度測定時点の横ひずみ

キーワード 超高強度コンクリート,配合,圧縮強度,静弾性係数,動弾性係数,セメント水比 連絡先 〒220-0073 横浜市神奈川区子安台 1-3-1 浅野工学専門学校 TEL:045-421-0403 FAX:045-431-9724

女 2 11工以此(上, 5.11.)上IT以效							
水セメント 比 (%)	セメント水 比	圧縮強度 (N/mm²)	静弾性係数 (×10 ³ N/mm ²)				
50	2.00	48.1	32.2				
45	2.22	53.3	40.9				
40	2.50	61.6	31.5				
35	2.86	68.5	34.8				
30	3.33	109.3	35.4				
25	4.00	130.5	43.5				
20	5.00	141.1	44.9				
18	5.56	151.2	49.2				
15	6.67	134.5	57.7				

表 2 円柱供試体の静弾性係数

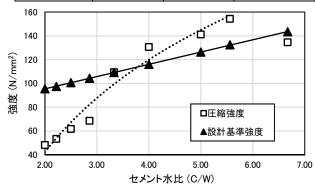


図1 圧縮強度の比較

3. 実験結果

表 2 に円柱供試体(各 3 本平均)の静弾性係数試験結果を示す。および、表 1 で示した設計基準強度と、表 2 で示した円柱供試体の圧縮強度との比較を図 1 に示す。セメント水比の増加に伴い、圧縮強度は曲線的に上昇する態様を示した。セメント水比3.33 から5.56(水セメント比30%から18%)においては、設計基準強度に近似、もしくはそれ以上の圧縮強度が得られたため、配合表の実用性が示された。しかし、セメント水比2.00 から2.86(水セメント比50%から35%)については、設計基準強度より著しく低下しており、配合表修正の必要性を示した。

図 2 について、円柱供試体(各 3 本平均)におけるセメント水比と静弾性係数との関係および、角柱供試体(各 2 本平均)におけるセメント水比と載荷前の動弾性係数(ポアソン比 0.2 とした)との関係図である。バラつきは見られるが、セメント水比の増加に伴い静弾性係数、動弾性係数ともに線形的に増加する。円柱供試体と角柱供試体と対象は違うが、静弾性係数の方が高い傾向が見られた。

表 3 および図 3 にて,角柱供試体の動弾性係数試験の一例 (W/C=18%)を示す。この供試体の最大荷重は1180kNであるが,測定方法の関係上,終局強度間際の計測が難しい。しかし,可能な限り行った結果

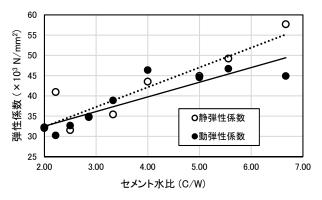


図2 セメント水比と各弾性係数との関係

表3 角柱供試体の動弾性係数 (W/C=18%)

荷重 (kN)	ポ ア ソ ン比	伝播時間 (μs)	伝播速度 (km/s)	動弾性係数 (×10³ N/mm²)
0	0.20	22	4.57	47.0
100	0.24	22	4.57	44.3
200	0.24	23	4.37	40.5
300	0.23	22	4.57	45.0
400	0.24	22	4.57	44.3
500	0.24	22	4.57	44.3
600	0.24	22	4.57	44.3
700	0.25	22	4.57	43.5
800	0.25	22	4.57	43.5
900	0.26	22	4.57	42.7
1000	0.28	22	4.57	40.8
1100	0.31	22	4.57	37.7

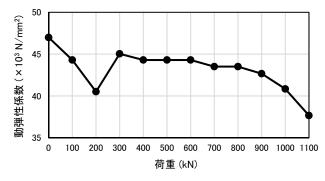


図3 荷重と動弾性係数との関係 (W/C=18%)

では、伝播時間・伝播速度は安定しておるため、結果として、動弾性係数はポアソン比に依存し、終局に近づくと次第に減少する傾向を示した。

4. 今後の展望

配合表の修正,および終局強度直前の伝播速度の測定法の確立などが挙げられる。

謝 辞 本研究は、防衛大名誉教授 故 加藤清志工博の指導のもと、 浅野工専卒研生の助力もあって行われた。謝意とともに、加藤工博に は謹んで哀悼の意を表する。

参考文献

1) 加藤清志: プレーンコンクリートの微小ひびわれと物性評価, 土木学会論文報告集 第 208 号, pp.121-136 (1972.12).