高炉スラグ微粉末およびフライアッシュを前駆体とした AAM の硫酸劣化

1. はじめに

環境負荷低減などの観点から注目される AAM (Alkali-Activated Material)は、耐火性、耐酸性など に優れることが知られている¹⁾.本研究では、下水 関連構造物などで求められる「耐硫酸性」に着目し て検討を行った.過去に AAM の耐硫酸性は幾つか 検討されているが²⁾、硫酸に侵食された組織の特徴 は十分に分析されていない.国内では、前駆体に高 炉スラグ微粉末 (BFS)およびフライアッシュ (FA) を単独または混合した AAM の研究が多くなされて いるが、耐硫酸性に優れた材料設計を行うには、劣 化メカニズムを詳細に検討しておく必要がある.本 論では、BFS 単独、FA 単独を前駆体とした AAM を 硫酸溶液に浸せきさせ、分析した結果を報告する.

2. 実験条件

2.1 試験体の作製

前駆体に BFS と FA を用いて AAM ペースト試験 体を作製し, 比較用として, 普通ポルトランドセメ ント (OPC) を用いてセメントペースト試験体を作 製した. BFS, FA, OPC の物理試験および化学分析 結果を表-1 に, 配合条件を表-2 に示す. 1×1×1cm の大きさに成形したのち, 浸せき試験に供するまで, OPC は水中養生, AAM は湿空養生を行った.

- (一財)日本建築総合試験所 正会員 〇吉田 夏樹
- (一財)日本建築総合試験所 正会員 中山 健一
- (一財)日本建築総合試験所 丹羽 大地

2.2 硫酸溶液への浸せき方法

材齢 28 日以上が経過した試験体を, pH1 に調整した 20℃の硫酸水溶液中に浸せきさせた. 試験体1 個 あたりの硫酸溶液の量は 200mL とし, 1 週間に1 回 の頻度で溶液交換を行った.

2.3 分析方法

8週間浸せきさせた試験体について,断面を対象と して EPMA (電子線マイクロアナライザ)により微 小部の面分析を行い,得られた定量的データを視覚 的に解析した.面分析条件は全て同一であり,図-1 中に示す.目視観察および EPMA による線分析によ り,pH1 の硫酸の浸透で組織が化学的に変化してい る「侵食領域」と,硫酸による侵食を受けていない 「健全領域」を判断し,それぞれを分析対象とした.

3. 実験結果

3. 1 OPC 試験体の分析結果

侵食領域において,26.07×26.07µm の範囲を面分 析し,SiO₂,Al₂O₃,CaO量の三元図を描いた結果を 図-1に示す.これより,データ群はCaOとSiO₂を結 んだ直線上に分布することが分かる.CaO近傍のデ ータ群は主に二水石膏と判断され,データ群のS/Ca モル比は約1.0であった.さらに,頻度が比較的高い 2つのデータ群を反射電子像に重ねると,二水石膏の

表-1 BFS, FA, OPC の物理試験および化学分析結果

種類	密度	比表面積	化学成分(%)											
	(g/cm^3)	(cm ² /g)	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	K ₂ O	Na ₂ O	TiO ₂	P_2O_5	MnO	SO ₃	LOI
BFS	2.90	4530	29.6	13.4	0.3	46.4	6.1	0.4	0.2	0.6	0.0	0.2	2.0	0.3
FA	2.24	3170	51.7	26.1	6.3	5.1	1.6	1.2	1.2	1.4	0.5	0.1	1.2	3.0
OPC	3.16	3420	20.9	5.4	2.9	65.2	1.5	0.5	0.3	0.3	0.1	0.1	2.1	0.6

封驗休夕		粉体(kg/m ³)		アルカリ刺激剤(kg/m ³)				
时间天 14-11	BFS	FA	OPC	蒸留水	7mol NaOH	JIS1 号水ガラス		
BFS 試験体	1506	-	-	90	377	176		
FA 試験体	-	1161	-	90	376	176		
OPC 試験体	-	-	1223	612	-	-		

表-2 ペースト試験体の配合条件

キーワード AAM, 高炉スラグ微粉末, フライアッシュ, 硫酸, EPMA

連絡先 〒565-0873 大阪府吹田市藤白台 5-8-1 (一財)日本建築総合試験所 建材部 材料試験室 TEL 06-6834-0271

電圧:15kV, 電流:5×10⁻⁸A, 測定時間:40.0msec/pixel, ピクセル数: 100×100pixel, ピクセル寸法:260.7nm, 走査:ビームスキャン

中に SiO₂を主成分とした物質(非晶質シリカと思われる)が点在していることが分かった.

3. 2 BFS 試験体の分析結果

健全領域を前節と同様に分析した結果を図-2 に示 す.データ群にピークが 2 つ認められ,反射電子像 に重ねると,片方は未反応の BFS 粒子,他方は AAM の水和物と分かる.

次に,侵食領域を分析した結果を図-3に示す.BFS の粉末は Ca を多く含むため,OPC と同様に二水石 膏が生成し,それと共に非晶質シリカが生成してい た.なお,OPC と比較すると,BFS 粉末の CaO 量は やや低く,SiO2 量が高いため,BFS 試験体の二水石 膏生成量は少なく,非晶質シリカ量は多いことが明 らかである.

3.3 FA 試験体の分析結果

健全領域の分析結果を図-4 に示す. データ群のう

ち,最も大きなピークは水和物 (N-A-S-H) のものと 考えられる.

次に,侵食領域を分析した結果を図-5 に示す.OPC, BFS と異なる点は,FA の粉末は CaO 量が低く,SiO2 量が高いことであり,これに対応するように,二水 石膏の生成は認められず,非晶質シリカを主体とす る物質が大部分を占め,その中にFA 粒子が残存して いた.一方で,OPC,BFS と同様に,健全領域の主 要水和物は,侵食領域では残存していなかった.

今後,本手法を用いて,さらに詳しく組織の化学 的特徴を明らかにし,前駆体に BFS および FA を単 独または混合した系の AAM の硫酸劣化メカニズム を解析したいと考えている.

図-5 FA 侵食領域の元素分析結果

4. まとめ

pH1 の硫酸に浸せきさせた AAM の EPMA 分析デ ータを解析し,以下の知見を視覚的に示した.

- BFS の AAM が pH1 の硫酸と反応すると, OPC と同様に二水石膏と非晶質シリカを生成する.
- (2) FA の AAM では, OPC や BFS と異なり, 二水 石膏は生成しない. 非晶質シリカを主体とする 物質が生成し, 大部分を占める.

参考文献

- Provis, J.L., Deventer, V. (Eds.), RILEM TC 224-AAM, Springer/RILEM, 2014.
- Allahverdi, A., Škvára, F., Journal Ceramics-Silikáty, Vol.49, No. 4, pp. 225-229, 2005.