コンクリートの耐凍害性に対する不凍材料の塗布による改善に関する検討

関西大学大学院理工学研究科 学生員 〇謝 佳禾 関西大学環境都市工学部 正会員 鶴田 浩章 関西大学化学生命工学部 河原 秀久

1. はじめに

寒冷地域で供用されているコンクリート構造物は冬季の厳しい寒冷気象のため古くから凍害による劣化被害が大きな問題となっている。凍害とは、コンクリート中の水分が凍結・融解を繰り返す際に生じる約 9%の体積膨張によって、表層に近い組織から徐々に崩壊していく現象である ¹⁾. 本研究では、氷結晶成長抑制効果と氷再結晶成長抑制効果を有する不凍多糖とそれと同等の材料に過冷却促進物質を加えた不凍ペプチドに着目した。天然素材から得た、これらの不凍材料を既設コンクリート構造物に塗布することによって、コンクリートの耐凍害性改善ができるかどうかを明確にすることを目的として検討を行った。

2. 試験概要

2. 1 不凍材料とは

不凍材料とは、不凍多糖と不凍ペプチドの総称である。不凍多糖とは、寒冷地に棲息する生物種の体内に含まれる不凍タンパク質から分解されたキシロマンナン多糖のことである²。不凍ペプチドとは不凍多糖と同様の機能を有するコラーゲンペプチドを主材料とし、それにメラノイジン、コーヒー粕エキス、みそエキス等の過冷却促進物質を少量加えた物である。

2. 2 試験方法

(1) 小片凍結融解試験

小片凍結融解試験は小山田らが提唱した「ソルトスケーリング劣化を評価する試験 ³⁾」に基づき、JSCE-C 507-2018 の「モルタル小片試験体を用いた塩水中での凍結融解による高炉スラグ細骨材の品質評価試験方法(案)」を参考にして行った。また、凍結防止剤とその濃度は、小山田らの実験結果および国立研究開発法人土木研究所寒地土木研究所の研究結果 ⁴⁾ に基づいて、塩化カルシウム 3mass%と決定した。スケーリング抑制効果の評価方法としては、試験前の質量と試験後に得られるふるい上に残った試料の質量の残存率により評価した。さらに、質量残存率よりスケーリング耐久性指標(SDI)を求め、定量的な評価を行った。SDI が 40 以上を示せば、スケーリング抑制効果を有するとされている. **表-1 使用材料**

(2) 凍結融解試験法(A法)

凍結融解試験は、JIS A 1148 A 法に基づいて実施した.評価方法に関しては、JIS A 1127 に基づいた共鳴振動によるコンクリートの動弾性係数及び質量減少率で行うものとした.相対動弾性係数が 60%未満もしくは 300 サイクル終了で試験終了とした.

2. 3 材料および配合、供試体の作製

使用した材料を**表-1** に、コンクリート等の配合を**表-2** に示す. 糖濃度は、不凍材料溶液 1ml の中に不凍多糖やコラーゲンペプチ ドがどの程度入っているかを示すものである. 以下、不凍多糖Ⅲ、

材料 記号 水道水 セメント OPC 普通ポルトランドセメント、密度3.15g/cm 川砂 淀川産、表乾密度2.59g/cm3、吸水率0.91%. 細骨材 S 表面水率1.84%、F.M.2.90 2.36mm以下に分級したもの 粗骨材 G 砕石 高槻産、表乾密度2.66g/cm3、吸水率0.93% エノキタケから抽出した物 接着剤 エノキタケから抽出した物 原液濃度300 μg/ml

表-2 コンクリート、モルタル配合表

No.	G.max (mm)	W/C (%)	s/a (%)	S/C	単位量(kg/m³)			
					W	OPC	S	G
1	20	50	50.6	-	191	381	875	878
2	-		-	2.1	292	583	1224	-

不凍多糖濃度(μg/ml),目標浸透深さ(mm)をそれぞれⅢ, PC, Aとして表記する.また,「N」は塗布していないプレーンの状態の供試体であることを示す.接着剤は不凍多糖と同様にエノキタケから製造されたものである.接着剤の添加方法については,接着剤濃度は不凍多糖塗布用糖濃度の0.5倍,接着剤質量は不凍多糖塗布量の5%として,不凍多糖溶液に混ぜて使用した.

キーワード:コンクリート構造物,凍害,不凍材料,凍結融解試験,小片凍結融解試験

連絡先: 〒564-8680 大阪府吹田市山手町 3-3-35 関西大学 環境都市工学部 TEL06-6368-0899

小片凍結融解試験は,**表-2** の No. 2 の配合を使用して,水中養生後の 56 日材齢時に不凍多糖 \mathbf{III} の低濃度領域(0 $\sim 100 \,\mu$ g/ml)のうち $5 \,\mu$ g/ml, $10 \,\mu$ g/ml, $20 \,\mu$ g/ml $\cdots 90 \,\mu$ g/ml の溶液に,切断した $0.8 \,\mathrm{cm}$ 立方体のモルタルブロックを浸漬して浸透させた.試験は 60 日目に開始し,糖濃度 $180 \,\mu$ g/ml の供試体は高濃度の比較ケースとして入れた.試体の作製はスランプフロー0 打を $95 \,\mathrm{mm}$, $15 \,\mathrm{Tr}$ $5 \,\mathrm{Tr$

凍結融解試験は、表-2 の No. 1 の配合を使用した. スランプ 10cm, 空気量 2.0%を目標値とした. なお、不凍多糖皿では、小片凍結融解試験の結果に基づいて、低濃度領域で最も試験結果の良い濃度 $(80 \, \mu \, g/ml)$ を使用し、不凍ペプチドでは不凍ペプチド原液の効果を明確にするため、接着剤を添加せずに実験を行った. 供試体一覧を表-3 に示す. 供試体を塗布の 48 時間前に乾燥機に入れ、24 時間 40° Cで乾燥し、24 時間常温放置完了後、材齢 26 日目に、不凍材料の浸透状況を確認しながら、所定量になるまではけで塗布を繰り返し行った. 塗布が完了したら、恒温恒湿室で気中養生を 24 時間行い、材齢 28 日目に凍結融解試験を開始した.

3. 結果および考察

小片凍結融解試験については、各濃度に対する質量残存率を**図-1** に示す.不凍多糖IIIの糖濃度が $5\sim90\,\mu$ g/ml の間で増加すればするほど、SDI の値が増加する傾向がある.低濃度域では、糖濃度が $60\,\mu$ g/ml 以上のすべての供試体が第 10 サイクル目終了後も質量残存率が 40 を上回り,糖濃度が $80\,\mu$ g/ml の供試体の SDI が最も高く (SDI=67. 1%),十分なスケーリング抵抗性を得ることができた.また,比較用ケースである糖濃度 $180\,\mu$ g/ml 供試体の SDI が 81.2%であり,高濃度の不凍多糖の効果が顕著であることもわかる.

凍結融解試験については、相対動弾性係数の変化と質量減少率をそれぞれ**図-2**、**図-3** に示す.**図-2** より、240 サイクルまで、N の劣化スピードが最も速く、不凍材料の塗布によってある程度の凍害進行速度を抑制できたが、全ての供試体の相対動弾性係数が 300 サイクル終了後に60%以上を維持したため、不凍材料を塗布した供試体が十分な凍結融解抵抗性を有するとは言えない.**図-3** より、N の質量減少率が最も高く、表面劣化が最も顕著であることがわかる.不凍材料を塗布した供試体の質量減少率が相対的に低く、特にみそエキスの場合はNより 35%減少したため、不凍材料が表面劣化の抑制に効果があると考えられる.

4 士 L 从

1) 不凍多糖Ⅲの糖濃度と SDI が比例する関係が見られ, 60 µ g/ml 以上の糖濃度では十分な凍結融解抵抗性を有することがわかった.

2) 不凍材料を塗布したことで、凍害の進行速度の低減と表面劣化に若干の効果を示したことがわかった.

参考文献

- 1) 庄谷征美ら: 東北地方のコンクリート構造物の凍害について, コンクリート工学, Vol. 42, No. 12, pp. 3-8, 2004.
- 2) 関西大学 天然素材工学研究室ホームページ: 不凍タンパク質・不凍多糖とは, 2021.3.31 確認
- 3) 小山田哲也ら: コンクリートのスケーリング劣化に及ぼす凍結防止剤の影響, セメント・コンクリート論文集, Vol. 67, pp. 95-101, 2013.
- 4) 土木研究所寒地土木研究所 寒地交通チーム: 凍結防止剤の散布手法に関する基礎的研究, 平成 22 年度, 2021. 3. 31 確認 https://thesis.ceri.go.jp/db/files/GR0002900132.pdf

表-3 凍結融解試験供試体一覧

供試体	塗布時の糖濃度 (μg/ml)	塗布材料	想定浸透深さ (mm)	接着剤の 有無
N	0	水	1	なし
コーヒー	10000	コラーゲンペプチド +コーヒー粕エキス	1	なしなし
みそ	10000	コラーゲンペプチド +みそエキス	1	
メラノイジン	10000	コラーゲンベブチド +メラノイジン	1	なし
III-PC80	80	不凍多糖川	1	あり

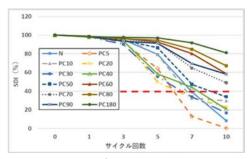



図-1 小片凍結融解試験結果

図−2 相対動弾性係数変化

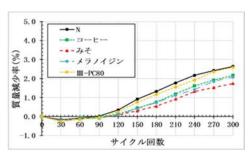


図-3 質量残存率変化