ベルトコンベア用 RI 水分計の材料高さによる寄与率を用いた補正方法

ソイルアンドロックエンジニアリング㈱ 機械部 正会員 ○中野 雄貴,谷口 龍

1. はじめに

ベルトコンベアで運搬される土や石などの建設材料の水分量をリアルタイムに計測する需要があり、その一 手法として、非接触での測定が可能な中性子線源を用いた散乱型の RI 水分計がある.しかし、RI 水分計はその 測定領域内の材料の量に増減があると測定値に誤差が生じてしまう.誤差を生じさせない方法としてベルトコ ンベア上の材料の量を制御する方法があるが現実的には難しい.そこで筆者らは測定値に材料の高さによる補 正を行うことで増減の影響を受けない結果を求める方法を過去の論文で提案した¹⁾が、そこでは補正計算の流 れについて提案したものの詳細な計算方法については検討していなかった.本論文では測定値に材料の高さに よる補正をかける計算方法をシミュレーションから導き、実際の材料に対しての検証を行った.シミュレーシ ョン方法としては、PHITS3.170(以後バージョンは省略する)²⁾を使用した.PHITS とは、あらゆる物質中での 様々な放射線挙動を核反応モデルや核データなどを用いて模擬するモンテカルロ計算コードである.

2. 補正手段

本論文の PHITS モデルとして, RI 水分計の上にアルミ板(厚 さ 1cm, 横幅 80cm, 奥行 80cm)を置き, その上に材料として山 砂(含水比 14%)を配置. 材料は, 高さ 15cm, 横幅 60cm, 奥行 60cm の範囲に材料が満たされた状態として, その範囲を図1の ように右半分のみ高さ 3cm, 横幅 6cm, 奥行 60cm で各ブロック に分割した.

まず図1のように5段目の1列目から1ブロックを取り除 き,次に先ほど取り除いたブロックを復元させてその隣のブロ ックを取り除く.それを5列目まで行った後,5段目のブロック をすべて除いて4段目も同様の手順で行った.これを0段目,つ まり全ての段が無くなるまで行った.

次に 1 ブロックごとの影響を求める. ①各段の RI 測定値t_i を(式 1)から求める. ②各段の寄与率 T_iを(式 2)から求め る. ③各ブロックの寄与率A_{ij}を(式 3)から求める. 全ての寄与 率(50%) T, 各段の寄与率 T_i, 各段の RI 測定値t_i, 各ブロックの 寄与率A_{ij}(i: 段, j: 列), 各ブロックの RI 測定値a_{ij}, 0 段目の 寄与率T₀, 0 段目の RI 測定値t₀とする.

$$t_{i} = \sum_{j=1}^{n} a_{ij} \quad (n = 5)(i = 1, \dots, 5)$$

$$T_{i} = \frac{t_{i}}{T} \quad (i = 0, \dots, 5) \quad , \quad T = \sum_{i=1}^{n} T_{i} \quad (n = 5) \quad (\not (\not (\not (z))))$$

$$I_{i} = \frac{1}{T} (i = 0, \dots, 5) , \qquad I = \sum_{i=0}^{T} I_{i} (n = 5) \quad (\not \exists 2)$$
$$A_{ij} = \frac{a_{ij}}{t_{i}} \cdot T_{i} (i = 1, \dots, 5) (j = 1, \dots, 5) \quad (\not \exists 3)$$

列目

材料(山砂)

断面

連絡先 〒561-0834 大阪府豊中市庄内栄町 2-21-1 ソイルアンドロックエンジニアリング㈱ 機械部 TEL06-6331-6031

キーワード RI 水分計, PHITS,ベルトコンベア

実際の材料による検証方法は、写真 1 のように PHITS モデルと同様の山 砂を盛り,高さのみ変化させて RI 水分計の測定を行うと同時に LiDAR (2D センサ)を使用して材料の高さを測定した.LiDAR から得られた材料の高さ から寄与率 (T')を積算し,RI 測定値 (X')を補正することで各高さの増減の 影響を受けていない補正後の RI 測定値 (X)を比較する (式 4).材料の高さ は 15cm,10cm,5cm の 3 パターン行った. 2T

$$X = X' \cdot \frac{2T}{T'} \qquad (\not \exists \xi 4)$$

写真1 材料の写真

3. シミュレーションと検証の結果と考察

シミュレーションによる各ブロックの寄与率を表 1 に示す.その中で寄与率が一番大きかったのは,2 段目の 1 列目であった.さらに,段ごとの寄与率をまとめた結果,1 段目よりも2段目,3段目,4段目のほうが大きいことを示 している.この結果から,今回の検証結果では線源部から 放射状に寄与率が小さくなっていくわけではなく2 段目,

すなわち線源より 3cm 上方の位置を中心とした扇状に広がっている ように見える.これは,図2の赤色の分布とも概ね一致している.

次に,実際の材料での検証結果を表 2 に示す.検証で使用した LiDARの測定結果による材料の領域を図3に示す.LiDARの適用範

囲として斜めの場合などは、寄与率を半分にするなどの処 理を行っている.補正後の RI 測定値はおおむね同じような 値になった.これを含水比で表した場合、補正量の最も小さ いであろう高さ 15cm を基準とした場合、高さ 10cm は 13.9%、高さ 5cm は 13.8%となる.つまりベルトコンベア上 の材料が少なくなれば少し含水比を低めに評価するという 結果が得られた.しかし、今回のシミュレーション結果によ る誤差は含水比でおよそ 0.2%程度であり、十分に実用可能 である.LiDAR の測定範囲が横幅と高さによる 2 次元であ るのに対して、実際は放射線が 3 次元的な領域に影響を与 えることも誤差の要因のひとつであると考えられる.

4. まとめ

本論文のシミュレーション方法は,材料を一定範囲ごと に分割し,その寄与率から RI 測定値を補正して求める方法 である.今回の検証結果としては,静的な室内試験の場合,含

表1 シミュレーションによる各ブロックの寄与率

		単位:%						
	全列合計	1列目	2列目	3列目	4列目	5列目		高
5段目(T5)	™ 5.7	^{A1} 2.9	^{A2} 1.8	^{A3} 0.8	^{A4} 0.2	^{A5} 0.0		
4段目(T4)	™ 7.6	^{B1} 4.2	^{B2} 2.2	^{вз} 1.0	^{B4} 0.2	^{в5} 0.0		寄
3段目(T3)	^{тз} 9.7	ີ 6.1	^{c2} 2.6	^{ເ3} 0.8	^{c4} 0.1	^{cs} 0.1		与 率
2段目(T2)	^{T2} 9.6	^{D1} 6.6	^{D2} 2.4	^{D3} 0.4	^{D4} 0.1	^{D5} 0.1		•
1段目(T1)	¹¹ 7.2	^{E1} 6.0	^{E2} 1.0	^{E3} 0.2	^{E4} 0.0	^{E5} 0.0		低
材料無し(T0)	™ 10.2							129

水比で誤差 0.2%程度であり、十分に実用可能であると考えられる.今後は、実際に動いているベルトコンベア上での測定精度の検証と材料による違い、測定値(含水比)への影響について検討する考えである.

参考文献

- 1) 中野雄貴,池永太一,谷口龍,ベルトコンベア用 RI 水分計の測定方法の検討,土木学会第 75 回年次学術講演会, 2020 年 9 月
- 2) Tatsuhiko Sato, Yosuke Iwamoto, Shintaro Hashimoto, Tatsuhiko Ogawa, Takuya Furuta, Shin-ichiro Abe, Takeshi Kai, Pi-En Tsai, Norihiro Matsuda, Hiroshi Iwase, Nobuhiro Shigyo, Lembit Sihver and Koji Niita.Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol. 55, 684-690 (2018)