砕石の品質がコンクリートの乾燥収縮ひずみに与える影響

岡山大学 正会員 ○藤井 隆史 岡山大学 学生会員 臧 洪祥 岡山大学 学生会員 瀧口 響 岡山大学 フェロー 綾野 克紀

1. はじめに

コンクリートの乾燥収縮ひずみは、コンクリート中からの水分の逸散によって生じる. コンクリートの乾燥収縮ひずみは、結合材や骨材などの使用材料の種類、単位水量や水セメント比などの配合の影響を受ける. 骨材は、コンクリート中の 6~7 割を占め、その品質がコンクリートの品質に与える影響は小さくない. 本論文では、砕石の品質がコンクリートの乾燥収縮ひずみに与える影響について検討を行った.

2. 実験概要

実験に使用した砕石の詳細を**表 1** に示す。実験には、24 種類の砕石を用いた。実験に用いたコンクリートの配合を**表 2** に示す。セメントは、普通ポルトランドセメント(密度:3.15g/cm³、ブレーン値:3,350cm²/g)を、細骨材は、硬質砂岩砕砂(表乾密度:2.65g/cm³、吸水率:1.53%、粗粒率:2.93)を用いた。粗骨材は、体

積が一定の条件で、各種砕石と置換して用いた. 混和剤には、AE減水剤およびAE剤を用いた. 乾燥収縮ひずみの測定は、 $100 \times 100 \times 400$ mmの角柱供試体を用いて、JISA1129-2附属書A(参考)により測定を行った.

3. 実験結果および考察

図1は、安山岩砕石のうち、No.2、No.4 および No.7 の乾燥収縮ひずみの測定結果を示したものである.吸水率が最も小さい No.2 を用いたものの乾燥収縮ひずみは小さく、No.2 よりも吸水率が大きい No.4 や No.7 を用いたものは、No.2 よりも乾燥収縮ひずみが大きい.一方で、No.4 と No.7 の吸水率は、ほぼ同じであるが、乾燥収縮ひずみに大きな差があることが分かる.図 2 は、コンクリート $1m^3$ あたりの骨材中に含まれる水分量 $\Delta\omega$ と乾燥期間 182 日における乾燥収縮ひずみの関係を示したものである.骨材中の水分量 $\Delta\omega^1$ は、次式により算出した.

$$\Delta\omega = \frac{\omega_S}{100 + \omega_S} S + \frac{\omega_G}{100 + \omega_G} G \tag{1}$$

 ω_S および ω_G : 細骨材および粗骨材の吸水率 (%) SおよびG: 単位細骨材量および単位粗骨材量 (kg/m^3) 骨材中の水分量が大きいものほど、乾燥収縮ひずみが大きくなることが分かる. 図 3 は、土木学会コンクリート標準示方書の収縮ひずみの予測式 $^{1)}$ で算出した乾燥収縮ひずみの計算値と、実験値を比較し示したもの

表1 使用した砕石

表1の使用した砕石								
No.	岩 種	絶乾密度	吸水率	安定性*				
		(g/cm ³)	(%)	(%)				
1	安山岩	2.67	0.62	5.83				
2	IJ	2.64	0.47	8.84				
3	IJ	2.71	0.46	6.56				
4	IJ.	2.61	1.14	6.45				
5	IJ.	2.62	0.56	10.15				
6	JJ	2.88	0.68	2.25				
7	JJ	2.67	1.18	24.25				
8	IJ	2.72	0.84	11.07				
9	ヒン岩	2.59	1.02	6.53				
10	硬質砂岩	2.73	0.56	9.02				
11	JJ	2.67	0.58	7.64				
12	JJ	2.60	0.77	8.12				
13	JJ	2.73	0.54	10.41				
14	IJ	2.79	0.71	6.91				
15	IJ	2.67	0.57	9.19				
16	粘板岩	2.69	0.87	11.69				
17	JJ	2.64	1.11	20.40				
18	IJ	2.67	0.97	3.45				
19	頁 岩	2.72	0.62	10.83				
20	石灰岩	2.70	0.19	10.43				
21	JJ	2.70	0.24	5.53				
22	ホルンフェルス	2.73	0.53	9.32				
23	流紋岩	2.51	2.03	4.75				
24	流紋岩質凝灰岩	2.58	1.36	3.46				

*安定性試験における損失質量分率

キーワード 乾燥収縮ひずみ、砕石、吸水率、安定性試験、予測式、骨材の品質を表わす係数 連絡先 〒700-8530 岡山市北区津島中 3-1-1 岡山大学学術研究院環境生命科学学域 TEL086-251-8155 空気量

(設計値)

(%)

s/a

(%)

図3 $\alpha=4$ として計算した場合

W/C

(%)

粗骨材

G

図 4 α =6 として計算した場合

混和剤(C×%)

AE 剤

AE 減水剤

50.0	4.5	44.0	170	340	798	1,020	0.5	0.0015		
1,000 800 400 200 000 000 000 000 000 000 000 0		10	No.7 No.4 No.2	o 数操収縮ひずみの実験値(×10 ⁻⁶)	400	秋石,凝灰石 No		Eルス		
図		乾燥期間(日) 宿ひずみの測	定結果	図 2	骨材中の水分量Δω(kg/m³)図 2 骨材中の水分量と乾燥収縮ひずみの関係					
乾燥収縮ひずみの実験値(×10 ⁶) 1,000 20 20 20 20 20 20 20 30 400 400 400 400 400 400 400 400 400	α=4 No No.2	+50% +25% 1.17 No.7 No.4 No.4 No.4 No.4 ■ : □ : □ :	±0 23 -25% 山岩・ヒン岩 質砂砂 ボルンフェルス 板岩 岩 灰岩 凝灰岩	乾燥収縮ひずみの実験値(×10 ⁻⁶)	1,000	山岩・ヒン岩	+25% lo.17 No.7	±0 No.23 -25% -50%, α=6		
	土木学会表	示方書の計算値	$(\times 10^{-6})$		土	木学会示方書の	D計算値(×10 ⁻⁶	³)		

表 2 コンクリートの配合(砕石 No.1 の場合)

セメント

水

W

単位量 (kg/m³)

細骨材

である. ただし、予測式の骨材の影響を表わす係数αには、4 を用いて計算を行っている. No.7 および No.17 以外の砕石を用いたコンクリート乾燥収縮ひずみは、示方書の計算値と±25%の範囲内にあることが分かる. No.23 の砕石は、吸水率が大きく、それを用いたコンクリートの骨材中に含まれる水分量も大きいが、予測式 の計算値は、実験値とよく一致している. これに対して、No.7 および No.17 は、他の骨材に比べると予測式の 計算値に比べて,実験値が大きい.図4は,予測式の骨材の影響を表わす係数αに6を用いて計算を行った結 果である。多くの砕石を用いたものは、予測式の計算値に比べて実験値が小さい結果となっている。一方で、 安定性試験における質量損失分率が著しく大きい No.7 および No.17 の砕石は、 α に6を用いて計算した方が、 計算値と実験値がよく一致していることが分かる.

4. まとめ

砕石の吸水率が大きいほど、それを用いたコンクリートの乾燥収縮ひずみは大きくなる. また、安定性試験 における損失質量分率が著しく大きい砕石でも乾燥収縮ひずみは大きくなる。安定性試験における質量損失 分率が大きい砕石では、コンクリート標準示方書の収縮ひずみの予測式の骨材の品質を表わす係数αに6を用 いた方が計算値と実験値がよく一致する.

参考文献

1) 土木学会: 2017年制定コンクリート標準示方書 [設計編], pp.107-109, 2018.3