締固めたベントナイトの自己シール性に及ぼす吸水方向および隙間幅の影響の実験的調査

早稲田大学 学生会員 〇山本 有雅, 伊藤 大知

早稲田大学 正会員 小峯 秀雄,フェロー会員 後藤 茂,正会員 王 海龍

戸田建設 正会員 関口 高志,北原 慎也

1. はじめに

高レベル放射性廃棄物の地層処分において,緩衝材にベントナイトの利用が検討されている^D. これはベントナイトが,緩衝材に求められる技術要件^Dを満たすと考えられているためである. 技術要件の一つである自己シール性は,周辺環境の影響を受けるため定量的に評価することが難しく,膨潤圧および膨潤特性や透水特性と比較して研究事例が少ない. そこで著者らは、ベントナイト系緩衝材の設計に寄与することを目的として,自己シール性を定量的に評価するための実験方法に関する検討を行っている. 本論文では吸水方向および隙間幅の相違による自己シール性への影響を調査するため、下端面および上

端面吸水による自己シール性実験を行った.

2. 使用した試料および供試体

試料は Na 型ベントナイトの KV1 (クニミネ工業製・クニゲル V1)を使用した.表1に KV1 の基本的性質を示す.供試体は静的締固め装置を用い

て, 内径 60 mm の実験用リング内に高さが 10 mm となるように作製した.表2に作製した供試体と実験条件を示す.

3. 下端面および上端面吸水による自己シール性実験の概要 と実験方法

図1に下端面吸水による自己シール性実験装置の概要を, 図2に上端面吸水による実験装置の概要を示す.本論文では 供試体の上端面のみ変形を許容した状態で蒸留水を供給し,

供試体上部に設けた隙間を膨潤変形によって充填する時の発生圧力を測定する実験を自己シール性実験と称 する.作製した供試体を用いて各実験装置の膨潤特性容器を組立て、ベロフラムシリンダーを操作しクランプ ノブ側の板とピストン側の板の間に隙間幅 1.25, 2.50 mm(以下,初期隙間幅とする)を設けた.本実験では 隙間充填時の変形量を測定するため、既往の研究³⁾と異なる位置に隙間を設置した.下端面吸水の場合、蒸留 水で満たした二重管ビュレットと底板をシンフレックスチューブで接続し、供試体下端面へ給水した.上端面

吸水の場合,底板にアクリル製円筒を設置し,その中 を蒸留水で満たした.膨潤特性容器の側面上部の通気 孔から容器内に蒸留水が浸入し,その後,ピストンの 通気孔からポーラスメタルを通り,供試体上部へ給水 した.すべての供試体に対して12日間給水し,ロード セルを用いて経過時間ごとの発生圧力を測定した.

また隙間充填後も供試体の鉛直方向の変形が生じた ため、初期隙間幅と合算して結果を整理した.

4. 下端面吸水および上端面吸水による自己シール性実験の結果と考察

表3に各供試体の平衡発生圧力と実験後乾燥密度を示す.また図 3に本実験で測定した平衡発生圧力と, 著者ら³⁾が測定した平衡膨潤圧および平衡発生圧力を示す.既往研究と同様に,実験後乾燥密度が大きい供

キーワード ベントナイト,自己シール性,放射性廃棄物,膨潤圧 連絡先 〒169-8555 東京都新宿区大久保 3-4-1 58 号館 203 号室 早稲田大学 地盤工学研究室 TEL03-5286-2940

衣I KVI の基本的性質	貝
主な交換性陽イオン	Na
土粒子密度(Mg/m ³)	2.73
液性限界(%)	476.9
塑性限界(%)	29.2
塑性指数	447.7
モンモリロナイト含有率(%)	48

表2 作製した供試体の条件と実験条件

\mathcal{X}_{2} F \mathcal{X}_{2} F \mathcal{X}_{1} F \mathcal{X}_{1} F \mathcal{X}_{2} F \mathcal{X}_{1} F \mathcal{X}_{2} F \mathcal{X}_{1} F \mathcal{X}_{2} F X				
供試体番号	1	2	Ι	II
吸水方法	下端面	面吸水	上端面吸水	
初期含水比(%)		8.	82	
初期供試体高さ (mm)	10.11	9.97	10.16	10.23
直径 (mm)	59.99	60.00	59.97	59.98
質量 (g)	50.102	49.769	49.826	50.156
初期乾燥密度(Mg/m ³)	1.61	1.62	1.60	1.59
隙間幅 (mm)	1.57	2.88	1.25	2.50

試体ほど平衡発生 圧力が大きく,指 数関数的に増加傾 向であった.また この関係には吸水 古向の影響はひたす

表 3	各供試体の	平衡発生圧力	と実験後乾燥密度

供試体番号	1	2	Ι	Π
吸水方法	下端面吸水		上端面吸水	
実験後供試体高さ(mm)	11.68	12.85	11.41	12.73
実験後乾燥密度(Mg/m³)	1.40	1.26	1.42	1.27
平衡発生圧力(kPa)	529.1	372.9	577.2	360.1

方向の影響はみられなかった.

図4に発生圧力の経時変化を示す.平衡発生圧力に到達する時間 は、上端面吸水による供試体の方が早かった.これは隙間充填時の膨 潤変形に吸水方向が影響を与えることが原因であると考えられる⁴⁾. 吸水方向や隙間幅による自己シール性への影響を検討するために、 各供試体の発生圧力を4段階に分け、最小二乗法による近似 値線の傾きから比較した.傾きの算出に使用した値は、傾き が変化する変曲点と変曲点の間で、かつ比較的直線の区間を 選択した(図4参照).表4に各供試体における各段階の傾 きを示す.1)段階では隙間幅の影響が顕著にみられた.その 後の2)段階では、隙間幅の影響が若干みられた.3)段階では、100

上端面吸水の傾きが若干小さい傾向がみられた.4)段階では 隙間幅による影響が顕著であった.

自己シール性実験の発生圧力に生 じる4つの段階は,膨潤圧試験の膨 潤圧に生じる2つのピーク⁵⁾と同様 の現象であると考えられる.そのた め,1)段階はモンモリロナイトの膨潤 による増加,2)段階は非膨潤性鉱物の

移動によって緩やかな増加,3)段階は非膨潤性鉱物の移動後のモンモリロナイトの膨潤による増加と推察される.自己シール性実験で2つのピークが顕著に生じない要因としては,隙間充填時の膨潤変形の段階で非膨潤性鉱物が移動し,2)段階での発生圧力の減少が小さかったことが挙げられる.そのため今後の実験では初期隙間幅や初期乾燥密度の条件を変更し,2)段階の発生圧力の減少量を増減させることで,2),3)段階における発生圧力の吸水方向と隙間幅による影響の詳細な調査を実施する.

5. まとめ

吸水方向および隙間幅の相違による自己シール性 への影響を調査するため、下端面および上端面吸水に よる自己シール性実験を実施した.表5に自己シール 性の各段階における吸水方向および隙間幅の影響を

1400 試料名:KV1 初期含水比:8.82(%) 初期乾燥密度:┍,(Mg/m 1200 衡**間幅:**d(mm) 凡例:吸水方向-ク。^{__}d 平衡発生圧力(1000 800 山本ら(2021)³ 下-1.61-1.57 平衡膨潤圧, 600 下-1.62-2.88 上-1.60-1.25 400 回帰曲線 .2081 * e (3.7054x) R= 0.96208 200 1.4 1.5 1.6 1.2 実験後乾燥密度(Mg/m³) 図3 平衡発生圧力と実験後乾燥密度の関 係 3)より加筆

表4 各供試体における各段階の発生圧力の傾き

吸水方向	 発生圧力が急 	2) 発生圧力が緩やか	3) 発生圧力が再度	4) 発生圧力が平
一隙間幅	上昇する段階	に上昇する段階	急上昇する段階	衡になる段階
下-1.57	0.31	0.042	0.068	ほぼ 0
下-2.88	0.16	0.038	0.055	ほぼ 0
上-1.25	0.35	0.048	0.044	ほぼ0
上-2.50	0.19	0.037	0.039	ほぼ 0

表5 自己シール性の各段階における影響

	隙間充填段階	吸水方向による影響が顕著		
	1) 一回目の急上昇	隙間幅による影響が顕著		
圧力発生	2) 緩やかな上昇	若干, 隙間幅による影響がみられる		
段階	3) 二回目の急上昇	若干,吸水方向による影響がみられる		
	4) 平衡発生圧力到達後	隙間幅による影響が顕著		

示す. 2), 3)段階における影響は,他の段階と比較して不明瞭である.そのため再度実験を行う予定である. 参考文献 1)核燃料サイクル開発機構:わが国における高レベル放射性廃棄物地層処分の技術的信頼性—地層処分研究開発第2 次取りまとめ—総論レポート,JNC TN 1410 99-020, pp.II-1-II-5, 1999. 2)原子力発電環境整備機構:処分場の安全機能と技術 要件(2010年度),NUMO-TR-10-11, pp.22-25, 2011. 3)山本有雅,伊藤大知,小峯秀雄,後藤茂,王海龍,関口高志,北原慎 也:締固めたベントナイトの膨潤圧および自己シール性に及ぼす吸水方向の相違の影響,第56回地盤工学研究発表会,2021.

(発表予定)4)山本有雅,伊藤大知,小峯秀雄,後藤茂,王海龍,関口高志,北原慎也:締固めたベントナイトの膨潤変形に及ぼす吸水方向の相違の影響,令和2年度土木学会全国大会第75回年次学術講演会,2020.5)Wang,H,Komine,H.,Gotoh,T.: A swelling pressure cell for X-ray diffraction test, Geotechnique, 2021.3, https://doi.org/10.1680/jgeot.20.00005.