蛇篭補強を施した粘り強い防波堤設計のための ISPH-DEM 連成シミュレーション

九州大学大学院	学生会員	〇辻	勲平
東京大学大学院	学生会員	竹崎	奏詠
九州大学大学院	正会員	浅井	光輝
九州大学大学院	正会員	ハザリ	リカ ヘマンタ

1. 目的

2011 年東北地方太平洋沖地震に伴う巨大な津波によ り,多くの防波堤が崩壊した.防波堤の崩壊要因として, (I) 防波堤ケーソンの前面と背面の水位差に起因する 大きな水平力,(II) 防波堤の天端を越流する津波によ る洗掘,(III) ケーソン直下の浸透流による捨石マウン ドの支持力低下及びパイピング破壊が影響すると考え られている.近年,金網に砕石などの礫材を充填した透 水性を有する蛇篭を捨石マウンド上に設置した補強工 法が注目され,ハザリカらの実験¹⁰によって洗掘低減効 果が示された.本研究では安定化 ISPH 法 ²⁰と個別要 素法 DEM を組み合わせた流体-地盤-剛体連成解析 ツールを提案し,蛇篭補強を施した防波堤実験¹⁰に対応 する数値実験を通して,提案手法の有効性を確認する.

2. 解析手法

(1) 流体の計算手法

津波は非圧縮性流体として扱い,解析手法として M. Asai et al. ²⁾ が提案した安定化 ISPH 法を用いる.支配 方程式には地表流と浸透流を間隙率 ε を介して統一的 に記述した Darcy-Brinkman 型の統一方程式を採用した. $C_{\tau}(\varepsilon) D\overline{v}_{c}$ 1

$$\frac{\partial r_{\ell}(\varepsilon)}{\varepsilon} \frac{\partial v_{f}}{\partial t} = -\frac{1}{\rho_{f}} \nabla P + \boldsymbol{g} + v_{E}(\varepsilon) \nabla^{2} \overline{\boldsymbol{v}}_{f}$$

$$\begin{cases} -a(\varepsilon)\varepsilon \boldsymbol{v}_{r} - b(\varepsilon)\varepsilon^{2} |\boldsymbol{v}_{r}| \boldsymbol{v}_{r} \quad (\varepsilon < 0.8) \\ -c(\varepsilon) |\boldsymbol{v}_{r}| \boldsymbol{v}_{r} \quad (\varepsilon \ge 0.8) \end{cases} \quad (1)$$

$$\frac{D\bar{\rho}_{f}}{Dt} + \bar{\rho}_{f} \nabla \cdot \left(\frac{\overline{\boldsymbol{v}}_{f}}{\varepsilon}\right) = 0 \quad (2)$$

ここで $P, g, \rho_f, v_f, v_r, C_r$ はそれぞれ, 圧力, 重力加速度, 流体密度, 流体速度, 仮想質量係数, 有効粘性係数を表 す(下付き添字 $_f$ は流体粒子). v_f, ρ_f はそれぞれダル シー流速, 地盤中の見かけの密度であり, 間隙率をを用 いて, $\bar{v}_f = \varepsilon v_f, \bar{\rho}_f = \varepsilon \rho_f$ で示される. また, a, b, c, v_E は 抵抗係数, 粘性係数を示す. 抵抗力項は流体と土粒子の 相互作用力であり, 相対速度 $v_r = v_f - v_s$ (v_f は流体の 速度, v_s は固体の速度) により相対的に評価する.

(2) 捨石マウンド,ケーソンブロック,蛇籠の計算手法

捨石マウンド及びケーソンブロック,蛇篭の挙動は 個別要素法 DEM で表現する.この際,捨石マウンドは 球形 DEM 粒子で表現した.接触解析にはバネ-ダッシ ュポットモデルを採用し,回転運動には凹凸形状の土 粒子が持つ転がり抵抗を転がり摩擦 m_r で表現する.ま た,流体粒子の抵抗力の反作用として抗力 f_d を考慮し た.一方,ケーソンブロックと蛇篭はそれぞれ,不透水 の剛体,透水性を有する剛体としてモデル化し,外力の 評価には大きな違いがある.不透水の剛体であるケー ソンブロックは,従来の流体-剛体連成解析³⁾と同様の 計算手法で挙動を追跡する.透水性を有した剛体であ る蛇篭については複数の DEM 粒子を結合した剛体と してモデル化し,抗力による流体力評価を行うことで 蛇篭の持つ透水性を再現した.なお,個々の抗力 f_{d_i} か ら合力 F_d ・合トルク M_d を求め,以下の剛体計算を行う.

$$M\frac{d\mathbf{v}}{dt} = M\mathbf{g} + \mathbf{F}_c + \mathbf{F}_d \tag{3}$$

$$\frac{d(I\Omega)}{dt} = M_c + M_d \tag{4}$$

$$\boldsymbol{F}_{d} = \sum_{i \in \text{gabion}} \boldsymbol{f}_{d_{-}i} \tag{5}$$

$$\boldsymbol{M}_{d} = \sum_{i \in \text{gabion}} \boldsymbol{f}_{d_{-}i} \times (\boldsymbol{x}_{i} - \boldsymbol{X}_{g})$$
(6)

ここで, $M, I, V, \Omega, F_c, M_c$ はそれぞれ蛇篭の質量, 慣性テ ンソル, 速度, 角速度, 接触力, 接触トルクを示す. ま た, x_i, X_g はそれぞれi粒子 (\in gabion, 蛇篭を構成する DEM 粒子)の位置ベクトル, 重心の位置ベクトルを表 す. なお, 剛体 (ケーソン及び蛇篭)の回転運動に関し ては, 四元数 (quaternion)を用いた計算を行った.

キーワード 防波堤,蛇篭,洗掘,浸透流,ISPH, DEM 連絡先 〒819-0395 福岡市西区元岡 744 W2-1102 構造解析学研究室 TEL 092-802-3370

3. 解析結果・まとめ

蛇篭による防波堤の捨石マウンド補強工法に関して, 図-1 に示すモデルを作成し、数値シミュレーションを 実施した.基礎地盤は変形しない多孔質領域として扱 い, 捨石マウンドの礫材のみを球形 DEM 粒子で表現し た. 今回は(a)無補強の場合, (b)蛇篭を設置した場合, (c)蛇篭の質量を仮に2倍にした場合の3ケースの解析 を実施した. 図-2 に 3 つの解析結果の比較を示す. こ こでは、解析コスト削減の観点から、ケーソンは固定壁 境界とした.(a)無補強の場合,越流水が捨石マウンドに 打ち込まれ、マウンドの大変形を伴う洗掘が確認でき る. 最終的に浸透流が捨石マウンドを貫通し, パイピン グ破壊に至った. (b)捨石マウンド上に蛇篭を設置した 場合, 越流初期は洗掘を防いだものの, 越流水が蛇篭間 の目地に直撃する場合は蛇篭が押し流された. その後 はケーソン背面で洗掘が発生し、捨石マウンドの大変 形が生じている.(c)蛇篭の質量を仮に2倍にした場合, 若干の捨石マウンドの変形と、蛇篭の変位が生じたも のの,洗掘を防ぎ,大きな破壊には至らなかった.

以上の数値実験から, 蛇篭の被覆により洗掘防止し,

捨石マウンドの洗掘破壊を防ぐことが確認できた. な お, 蛇篭が持つ透水性の定量的な評価, あるいは基礎地 盤の変形まで考慮できておらず, 定量的な比較検討は まだ実施していない. しかし, 越流後には蛇篭の持つ洗 掘低減効果までを定性的に表現できており, 粘り強い 防波堤の事前予測が可能なツールの基礎が開発できた.

参考文献

- ハザリカ・ヘマンタら:鋼矢板および蛇篭補強によるケ ーソン式防波堤の基礎補強工法の耐震挙動に関する基礎 的研究,日本地震工学会論文集, Vol.12, No,13-1(特集 号),2016.
- Asai, M. et al.: A stabilized incompressible SPH method by relaxing the density invariance condition, Journal of Applied Mathematics, Vol.2012,2012.
- Asai, M. et al. : Fluid-rigid body interaction simulations and validations using a coupled stabilized ISPH-DEM incorporated with the energy-tracking impulse method for multiple-body contacts, Computer Methods in Applied Mechanics and Engineering, Vol. 377, 113681, 2021

