地下空洞形成により発生する地盤内緩み領域の簡易予測

陥没 浸透流 空洞 緩み

1.はじめに

近年,全国各地で年間約9000件もの陥没災害が発生 している. その原因の多くは地下埋設管の劣化に起因 する管内への土砂の流出によるものである.既往の研 究 1)より地下空洞の進展挙動は徐々に明らかになって いるものの、空洞形成による緩み領域の予測は行われ ていない. そこでトンネル施工における緩み理論を既 往の実験データに援用することで地下空洞形成領域と それに伴い発生する地盤内ゆるみ領域の簡易な予測方 法の提案を検討した.

2. 実験概要

図-1 に実験機の概要図を示す. 土槽底面部に下水管 の模擬管渠を設置し、欠損が生じた管渠周辺地盤を再 現した. 表-1 に一連の研究で実施した空洞生成実験の 3 種類の土槽の寸法,水位条件,模擬管渠の欠損条件を 示す.また図-2は用いた試料の粒度分布を示しており, 細粒分を洗い流した洗い山砂と洗い改良土, 珪砂7号 と2号を重量比 6:4, 5:5 で混合した S6:4 と S5:5 を用 いた.

予測値算定に用いた式

既往の実験結果から図-3 に示す Terzaghiの緩み土圧 理論 2)を用いて空洞の形成領域予測を行った.この理 論はシールド掘削に伴う地盤内の緩み範囲とトンネル 上部に発生する緩みについて述べた理論で式(1)に理

名古屋工業大学	学生会員	○野村	凌平
名古屋工業大学	正会員	前田	健一
名古屋工業大学	学生会員	平子	ともみ
名古屋工業大学	学生会員	林	英璃奈

論式を示す.

$$B_0 = R_0 \cot\left(\frac{\pi/4 + \emptyset/2}{2}\right)$$
 (1)

ここで、ゆるみ幅:B0、トンネル内径:R0、内部摩擦角:Ø を代入し緩み幅予測値を求め、実測緩み幅との比較を 行った.

4. 緩み幅の理論値と実測値

緩み幅の実測値は図-4のように実験後の緩み領域か ら求めた. 緩み幅予測値は図-3 中の B₀のようにトンネ ル中心からの距離であるため、実測値と比較する際に は緩み幅予測値を2倍したものと比較した.また小型・ 中型土槽については式(1)の Ro に管渠半径を代入した

使用土槽の概要図 図-1

表-1 各土槽の寸法						
	土槽名	小型土槽	中型土槽	大型土槽		
	H(mm)	500	600	800		
	W(mm)	500	1200	1600		
	D(mm)	250	250	500		
	H(mm)	100,200,300 400,500	400,500	525,725		
	欠損径d	(円)5	(円)30,40,50	(スリット)		
	(mm)		(スリット)15,40	15,30,50		

陥没,浸透流,空洞,緩み

連絡先 $\mp 466 - 8555$ 愛知県名古屋市昭和区御器所町 名古屋工業大学16号館227号室 TEL:052-735-5083 場合と欠損半径を代入した場合の結果を示す.

4.1 小型土槽の予測値と実測値

図-5 に小型土槽の予測値と実測値の関係を示す.青 の実線が式(1)より算出した予測値であり,プロットし てあるものが実測値である.小型土槽では管渠半径を 代入した場合,予測値より小さいか,予測値に近い値 をとることが分かる.一方欠損半径 0.0025(m)を代入し た場合緩み幅の予測値は各ケースとも 0.002(m)程度と なり実測値よりもかなり小さい値となる.円欠損のよ うな小さい欠損では,欠損自体が緩みのもとになって いるのではなく,図-6のような欠損よりさらに広い範 囲で形成される土粒子のアーチが原因で,アーチが形 成されているため,予測値より実測値のほうが大きく なると考えられる.また今回算出された予測値は欠損 半径の値の 20 倍を代入した値と近いことがわかる.

4.2 中型土槽の予測値と実測値

図-7より中型土槽では欠損半径を代入したケースに おいて予測値に近い値をとるケースが存在した.これ らのケースは図-8のように緩みが発生したケースであ り,緩み発生後,欠損部に土粒子が集中し目詰まりが 形成され,空洞領域が抑制されたと考えられる.以上 からスリット欠損の場合はそれ自体が緩みの原因とな り得る.目詰まりが発生しなかったケースは緩みが観 測される前に浸透流によって土粒子が流されたと考え られる.

4.3 大型土槽の予測値と実測値

図-7より大型土槽においても予測値に近い値をとる ケースが存在した.これらのケースは緩みが発生した ものであり,緩みが発生しなかったケースでは浸透流 により空洞が形成された.理由としては緩みが発生し たケースでは欠損部に土粒子が集中することで目詰ま りが形成され,空洞形成が抑制されたと考えられる. 緩み領域が形成されず空洞が進展し続けたケースでは 欠損に対して土粒子の粒径が小さく目詰まりが形成さ れなかったため,欠損の発生とともに土粒子が流出し, 一時的に緩み領域が形成されても浸透流により押し流 され空洞が形成されたと考えられる.

5. まとめ

既往の実験データを用いて空洞形成に伴う地盤内緩 み領域の予測方法の提案を試みた結果,明らかになっ たことを以下に記す.

 小型土槽を用いたケースでは理論式に管渠半径を 代入した場合,緩み幅予測値より小さいか近しい値を とることが分かった.一方欠損半径を代入した場合緩 み幅予測値は実測値よりかなり小さい値となり,欠損 半径の20倍を代入した予測値に近い値を示す.
中型,大型土槽では欠損半径を代入することで実 際の緩み幅が予測値と近い値を示すことが判明した.
今回の結果より欠損が円形であれば管渠半径を, 欠損がスリットであれば欠損半径を代入することで緩 み幅が推測できると考えられ,緩み土圧理論を援用す ることで優先的に対策する箇所を選定できると考え る.

6. 参考文献

 平子ら:地下水位に起因する地盤内浸透流が空洞 形成に与える影響,土木全国大会第75回年次学術講 演会,III-453,2020.9.9

