杭群周辺の河床変動に及ぼす杭群密度および配置方法の影響

1. はじめに

透過水制は局所洗掘の抑制し,下流に緩やかな減速 をもたらすことが期待されるが,透過水制における具 体的な最大洗掘深の予測式は明らかにされていない. そこで本研究では,円柱を杭群として用い,杭群密度 および配置方法が,最大洗掘深および杭群周辺の河床 変動に及ぼす影響について模型実験を行い検討した.

2. 実験条件

実験は、掃流砂を対象とした静的洗掘条件で行った. 実験水路は、長さ12m,幅0.6m、勾配I=1/1000の勾配 可変水路を用いた.水路は上流から 6~8m の深さ 150mm の段落ち部に平均粒径 0.417mm の 5 号砂を前 後の河床面まで敷き詰め,移動床部分とした.水理条 件は表-1に示す. 杭群模型は長さ,幅ともに水路全幅 の 1/4 にあたる 150mm とし, 直径 D=10mm の円柱を 水路縦断,横断方向それぞれで杭の本数n_x,n_vを設定 し,等間隔に並べた. 杭群高さは250mmとし非越流下 で実験を行った. 杭群は水路上流端から 6.35m の右岸 側に1つ設置した.ただし、図-2に示してある杭群模 型の構造上,壁面から 5mm だけ離れている. グラフの 原点は杭群前面の壁面とした.ケース名は、先頭の数 字は水路横断方向の杭の本数n_v,2番目の数字は水路 縦断方向の杭の本数nxであり、偶数列の杭を奇数列の 杭と杭の中央に置く千鳥配置には S, 整列配置には L をケース名の末尾に付けた.また、不透過水制を用い て行ったケース名は full とした. 今回用いる密度λは 次式で定義する.

$$\lambda = \frac{\pi D^2}{4S_x S_y} \tag{1}$$

ここで、 S_i はI軸における杭の中心間の距離である. 通水直後の大きな水面勾配のために砂が流れないよう に小さい流量で水を溜めてから杭群周辺の河床変動が 平衡状態となるまで(18時間程度)定常流量通水させた 後、河床形状をレーザー距離計で計測した.水深はポ イントゲージを用いて一定になるようにした.ただし、 不透過のケースは杭群前方の土砂がすべて洗掘された ため、その時点(8時間程度)で通水を終了した.測定範 囲は、x=-30~75cm、y=0~45cm とし、測定間隔は横断 方向では 5mm、縦断方向では杭群周辺(x=-3.0~18mm) は 5mm、それ以外は 10mm とした.

名古屋工業大学	正会員	○伊藤	瑞基
名古屋工業大学	フェロー会員	冨永	晃宏

表-1 実験条件

流量	水深	水路幅	平均流速	フルード数	限界摩擦速度
Q (L/S)	h (cm)	B(cm)	U_m (cm/s)	F_r	u_{*c} (cm/s)
8.0	5.0	60	26.7	0.38	1.68

3. 実験結果

図-3 に通水後の各ケースの河床高さコンター,図-4 に 杭群の中心通る河床高さの縦断図(y=8.0cm)を示す.今 回の実験では,水路縦断方向の杭の本数 n_x ,横断方向の 杭の本数 n_y ,配置形態(整列配置 L または千鳥配置 S) の3項目を変化させて行った.

(1) 水路縦断方向の杭の本数(nx)の影響

図-3(a)(b)(c)に水路縦断方向の杭の本数が異なる ケースの河床高さコンターを示す. 杭群内の洗掘およ び杭群背後の堆積形状は類似している.しかし,主流 域部分の洗掘は杭の本数が多くなるほど小さくなる. これは,杭の本数が多くなるほど杭群内での減速が大 きく,杭群後方の水路中央部への流れが相対的に小さ くなるためだと考えられる.

(2) 水路横断方向の杭の本数(n_v)の影響

図-3(b)(d)(e)に水路横断方向の杭の本数が異なる ケースの河床コンターを示す.横断方向の杭の本数が 多いケースは,杭群前面の洗掘は大きく,範囲も広い が,杭群内で洗掘深が急激に小さくなっている.これ に対し,杭の本数が少ないケースは,杭群前面の洗掘 は小さいが,杭群内で洗掘深が一定で,杭群後方まで 洗掘が広がっている.また,杭群背後の堆積は杭の本 数が少ないものほど,薄く広く堆積している.これは 杭の本数が少ない場合,杭群内の流速の減速が相対的 に小さく巻き上げられた砂が下流まで運ばれるのに対 し,杭の本数が多くなると,杭群内の減速が大きく杭群後 方での掃流力が低下するためだと考えられる.

キーワード 杭群,局所洗掘,最大洗掘,移動床,河床変動,千鳥配置 連絡先 〒466-8555 名古屋市昭和区御器所町 名古屋工業大学・社会工学科 TEL052-735-5490

(3) 配置形態の影響

図-3(b)(f),表-3より千鳥配置と整列配置の比較を 行う.千鳥配置は整列配置より最大洗掘深が大きく, 杭群横の洗掘が大きくなっている.これは千鳥配置が より多くの流れを水路中央にむかうものに変えるため だと考えられる.また,千鳥配置は整列配置に比べ杭 群背後に厚く狭く土砂が堆積している.これは,千鳥 配置は偶数列の杭と奇数列の杭の配置が異なるため, 杭群の減速効果が大きく,通過流速が小さくなってい るためだと考えられる.

=	0 = 10		
55L	36.1	55S	49.7
66L	41.9	66S	53.1
77L	58.5	77S	64.7
88L	69.7	88S	76.7
64L	41.5	68L	44.2
46L	35.7	86L	66.7

4. 最大洗掘深推定式の検討

表-3 に各ケースの最大洗掘深を示す.水路横断方向 の杭の本数が増加すると,最大洗掘深は大きくなって いるが,同じ本数でも,千鳥配置は整列配置より最大 洗掘深は大きくなっている.そのため,杭群の配置形 態に関する補正方法を検討する.図-6 のように千鳥配 置は,偶数列の杭群を奇数列に近づけることによって, 横断方向の杭の本数が多い整列配置になるという考え のもと,水路横断方向の杭の本数が n 本の千鳥配置に 対する補正係数を次式で定義する.

$$\alpha = \frac{\beta \times \lambda'_n + (1 - \beta) \times \lambda'_{(2n-1)}}{\lambda'_n}$$
(2)

ここで λ'_n は水路横断方向の杭の本数がn本のときの不 透過度であり、 β および λ'_n は次式で定義する.

$$\beta = S_x / S_r \tag{3}$$

$$\lambda' = \frac{\pi n_y D^2 / 4}{L_y D} = \frac{\pi n_y D}{4L_y} \tag{4}$$

ここで S_r は千鳥配置における奇数列と偶数列の杭の中 心間隔である. $\square - 6$ に補正係数 α と不透過度 λ' の関係 ($\beta = 2/\sqrt{5}$)を示す. 杭群の密度を大きくした極限では 不透過になると考え,不透過($\lambda' = 1$)の最大洗掘深と して次の Laursen-Toch の平衡洗掘深さの推定式¹⁾によ る予測値を用いる.

$$Z_{S0}/L_y = 1.5(h_0/L_y)^{0.3}$$
⁽⁵⁾

本実験($L_y = 15cm$, $h_0 = 5.0cm$)における不透過 ($\lambda' = 1$)の値は1.079となり,これに漸近する近似式として 次式を提案する.

$$Z_s/L_y = 1.5\alpha\lambda'(h_0/L_y)^{0.3}$$
(6)
図-7に(1/\alpha) Z_s/L_yと\lambda'の関係を示す.

5. まとめ

本研究では,杭群を用いた杭群密度および配置方法 が河床変動に及ぼす影響について検討した.以下に得 られた知見を示す.

- (1) 水路横断方向の杭群密度が高いほど、最大洗掘深 は大きくなる.また、洗掘は杭群前方に位置し、 堆積範囲は狭くなる.
- (2) 横断方向の杭群密度が同じ場合,千鳥配置は整列 配置より最大洗掘深が大きくなる.補正方法を提 案した.

参考文献

1) 土木学会編(1999):水理公式集,平成11年版 pp.218-222