低サイクル疲労き裂を起点とするぜい性破壊の発生可能性に関する基礎的研究

名古屋大学 学生会員 〇荒川 純 正会員 判治 剛 フェロー会員 舘石 和雄 正会員 清水 優

1. 研究背景

地震時の鋼橋の耐震性能を適切に評価するためには, 低サイクル疲労き裂を起点とするぜい性破壊の発生可 能性を予測する技術の確立も必要である.しかし,低サ イクル疲労き裂が成長してぜい性破壊に至るまでのプ ロセスを適切に予測できる手法は十分に検討されてい ない.そこで,地震時に発生した低サイクル疲労き裂を 起点としたぜい性破壊の発生評価法を構築する足掛か りとして,本研究では,異なる載荷パターンで導入した 低サイクル疲労き裂を対象に CTOD 試験を行い,高サ イクル疲労き裂に対する試験結果と比較し,ぜい性破壊 の発生しやすさとの関係について考察を加えた.

2. 試験体

本試験では、図-1 に示す V 字型のサイドグルーブを切 削した CT 試験片¹⁾に低サイクル疲労き裂を導入した後、 図-2 に示す CTOD 試験用の3 点曲げ試験片をワイヤカ ット放電加工により切り出した.低サイクル疲労き裂の 導入方法は後述する.供試鋼材は一般構造用圧延鋼材 SS400 とし、その機械的性質を表-1 に示す.試験片の製 作を2回に分けて行い、それぞれで別々の鋼板を使用し たため、末尾にI、II を付けて区別している.高サイクル 疲労き裂用の CTOD 試験片も同じように CT 試験片から 切り出して製作したが、疲労き裂は3 点曲げ載荷にて導 入した.ASTM E1820²⁾に従い、最大荷重3.1kN、最小荷 重 0.3kN (最小/最大荷重は 0.1)、振動数 10Hz 以下で試 験を行い、規定される長さまで疲労き裂を進展させた.

3. 低サイクル疲労き裂の導入

低サイクル疲労き裂は過去の研究¹⁾の試験方法を参考 に、一定振幅の繰返し変位を与えて導入した.高サイク ル疲労き裂と同程度の長さまでき裂を成長させた後、き 裂先端を含むように3点曲げ試験片を採取した.き裂先 端の塑性ひずみの大きさや履歴を変化させるために、表 -2に示す最大変位の異なる2種類の載荷条件を設定し た.き裂進展試験の結果、本研究にて導入した疲労き裂 の進展速度は、従来の線形破壊力学に基づく Paris 則³⁾で は評価が難しい、0.2~1.5mm/cycle 程度であった.

図-1 CT 試験片形状

(b)機械切欠き形状(c) ナイフエッジ形状図-2 3 点曲げ試験片形状

表-1 鋼材の機械的性質

	鋼板	機械的性質			
		降伏点 (N/mm²)	引張強さ (N/mm²)	伸び (%)	
	鋼材 I	355	477	27	
	鋼材 II	296	431	32	

表-2 予き裂導入条件

	低	高サイクル 疲労		
試験片名	L15-I	L15-II	L30-II	H-I
予き裂	0.0~1.5	0.0~1.5	1.5~3.0	0.3~3.1
導入条件	mm	mm	mm	kN
鋼材	Ι	II	II	Ι
試験数	3	3	1	9

低サイクル疲労き裂が約 15mm まで進展する間のき裂長と繰返し回数の関係を図-3 に示す. 与えた変位の 最大値は異なるが,変位振幅が同じであるため,載荷ケースによるき裂進展挙動の顕著な違いはみられない.

キーワード 低サイクル疲労, ぜい性破壊, 限界 CTOD

連絡先 〒464-8603 名古屋市千種区不老町 名古屋大学大学院工学研究科土木工学専攻 TEL: 052-789-4620

4. CTOD試験

CTOD 試験は ASTM E1820²)に準拠して行った. 試験状況を図-4 に示 す. 試験中は温度を一定に保つために,断熱材で作成した恒温槽で囲 い,試験片が十分に浸かるようにエタノールを満たした. 冷却剤には 液体窒素を用いた. 試験片の温度は,試験片の表裏面に設置した K型 熱電対により計測し,その平均を試験温度とした. 試験片数が限られ たことから, -40℃~-80℃の範囲で行った高サイクル疲労き裂の試験 結果を基に,低サイクル疲労き裂に対する試験は-60℃のみとした. 荷 重は変位制御で与え,速度は 0.001mm/s とした. 試験片のナイフエッ ジにクリップゲージを取り付け,荷重と開口変位を測定した.

SEM による低サイクル疲労き裂先端の破面観察結果の例を図-5 に 示す.低サイクル疲労により導入したき裂面には延性破面の特徴であ るディンプルと呼ばれる微小空洞がみられる.また,その疲労き裂を 起点としてぜい性破壊に移行している様子を確認できる.

実験により得られた限界 CTOD と温度の関係を図-6 に示す. 図中に は高サイクル疲労き裂を対象とした本研究の試験結果と過去の研究の 結果⁴⁾も載せている.本研究の高サイクル疲労き裂に対する限界 CTOD は過去のそれとほぼ同じ領域に分布しており,独自に作成した試験シ ステムの妥当性を確認できる.また,低サイクル疲労き裂に対する限 界 CTOD は高サイクル疲労き裂のそれとほぼ同等であった.低サイク ル疲労領域では,き裂先端の鈍化による幾何的な影響が大きく,限界 CTOD が増加すると予想されたが,それとは反する結果であった.こ の理由として,繰返し塑性ひずみによる靭性の劣化が影響していると 考えられる.つまり,き裂先端の鈍化の影響が材料の靭性劣化により 相殺された可能性がある.ただし,試験片数が限られていることや, 図-5 に示すように導入したき裂面が過度に湾曲している試験片もみ られたことなどから,結果の妥当性の再検討も踏まえ,今後のさらな る結果の蓄積が不可欠である.

5. まとめ

本研究では、低サイクル疲労き裂に対する CTOD 試験を実施し、得 られた限界 CTOD は高サイクル疲労き裂に対するそれとほぼ同程度 である可能性が示された.しかし、試験片数が限られていることなど から、要因分析を詳細に行えるだけの十分な結果が得られず、引き続 きの検討が必要である.

謝辞 本研究の一部は科学研究費補助金(18H01520,代表:判治剛) によるものである.試験治具の製作および試験片加工に関しては,名 古屋大学全学技術センター 長谷川達郎氏に,SEM 画像の撮影に関し ては,名古屋大学高度計測技術実践センター 樋口哲夫氏に多大なる ご協力をいただいた.ここに記して深謝します.

参考文献 1) Panjaitan et. al.:鋼構造論文集, Vol.27, No.106, pp.75-80, 2020. 2) ASTM E1820: Standard Test Method for Measurement of Fracture Toughness, 2020. 3) 日本鋼構造協会:鋼構造物の疲労設計指針・同解説, 2012. 4) 表ら:寒地土木研究月報, No.700, pp.30-35, 2011.

図-3 き裂長-繰返し回数関係

図-4 試験状況

図-5 破面観察の例

