ケーブル部材の状態が長大吊橋の構造安全性に及ぼす影響検討

本州四国連絡高速道路株式会社 正会員 〇金田 崇男,正会員 山口 和範,正会員 有馬 敬育

1. はじめに

道路構造物に対して、5年に1回,近接目視を基本と する定期点検が行われているが,橋梁については,全 部材を一律に近接目視することの人的・費用的な負担, 近接目視では状態把握にならない場合があるなどの課 題がある.これに対し,道路メンテナンスに関する今 後の検討事項として,橋梁等の構造や点検の目的に応 じて,点検を最適化していくことが求められている¹⁾.

特に、同じ部材を多く有し、近接目視が困難又は容 易でない吊構造形式橋梁でその影響が顕著であり、ま た、近年、海外において同形式橋梁の落橋事故が発生 していること等を踏まえ、ケーブル部材の重要度を評 価し、定期点検を合理化することを検討している.

そこで、長大吊橋である因島大橋を対象に、主ケー ブル及びハンガーロープの状態が橋の構造安全性に及 ぼす影響評価手法を検討するため、解析モデル、ケー ブル部材の状態、解析手法をパラメータとした解析的 検討を行った.本論文では、そのうち主ケーブルに関 する検討結果について報告する.

2. 検討概要

主ケーブルの断面減少及びハンガーロープの破断な ど、吊橋のケーブル部材の状態の違いを考慮できる合 理的な構造解析手法を検討するため、表-1 に示す長大 吊橋を対象に、表-2 に示す簡易モデル(図-1)及び詳 細モデルの2 種類の解析モデルを作成した.そのうえ で、解析手法の違いを評価するため、微小変位解析及 び有限変位解析を行い、補剛桁等の応答値を比較整理 した.

橋名	因島大橋
形 式	3径間2ヒンジ補剛トラス桁吊橋
橋長	1,270m
支間割	250m+770m+250m
主 塔	塔高 136m
床版形式	鋼床版
主ケーブル	2本, 618mm(P.W.S. 127×91本)
ハンガーロープ	968本(121格点×4本×2面)

表-1 橋梁諸元

3. 解析モデル

3.1. 簡易モデル

簡易モデルは、補剛桁を一本の線形はり要素でモデ ル化した魚骨モデルとした.ケーブル部材の挙動を評 価するため、主ケーブルはサグの影響を考慮できるよ うに、ハンガーロープ間を3分割した線形ケーブル要 素とした.ハンガーロープはトラス要素でモデル化し、 圧縮には抵抗せず、引張には降伏後は2次剛性になる ような非線形性を考慮した.また、ハンガーロープの 破断を表現するために、部材の上下に破断を考慮する ダミー部材を配置した.

3.2. 詳細モデル

詳細モデルは、当橋の耐震照査で用いた立体骨組モ デルを準用し、主塔及びトラス桁部をファイバー要素 でモデル化した.ハンガーロープは線形ケーブル要素 とした.本来は非抗圧で引張降伏に対する塑性化など の材料非線形を有する部材だが、詳細モデルが複雑な ため、ハンガーロープを材料非線形性でモデル化した 場合、解析が収束しなかったためである.主ケーブル は簡易モデルと同様とした.これは、引張の非線形性 を考慮し、ハンガーロープ間の再分割により面外方向 の拘束がない中間点を不安定化させないためである.

図-1 簡易モデル

表-2 解析モデル

解析モデル	簡易モデル (魚骨モデル)	詳細モデル (立体骨組モデル)
主ケーブル	線形ケーブル要素	線形ケーブル要素
ハンガー ロープ	非線形トラス要素	線形ケーブル要素
補剛桁・主塔	線形はり要素	非線形ファイバー要素
リンク沓	線形トラス要素	線形トラス要素

キーワード: 吊橋, ケーブル部材, 断面減少, 解析モデル, 構造解析, 解析手法 連絡先: 神戸市中央区小野柄通 4-1-22 本州四国連絡高速道路(株) 長大橋技術センター TEL078-291-1071

4. 構造解析

解析には、ハンガーロープ破断後の断面力の再分配 を考慮できる「Sean FEM」を用いた.荷重条件は、D、 D+L の 2 ケースとし、活荷重は影響線を求め、着目位 置である側径間側の主塔近傍に対して影響線載荷した.

主ケーブルの状態は, R 側を健全, L 側を全区間の断 面積を 10%, 20%低減させ, 簡易モデル及び詳細モデ ルに対して, それぞれ微小変位解析と有限変位解析を 行った(**表-3**).

桁の鉛直変位に着目した解析結果を表-4~5 及び図 -2~3 に示す.詳細モデルは、R・L それぞれの上弦材 の変位量を算出しており、桁の鉛直変位については平 均値で整理した.なお、いずれのケースも、主ケーブ ルを含めた全部材は弾性範囲に留まっている.

4.1. 解析方法による違い

死荷重時(D,10%減)の桁の鉛直変位は,簡易,詳 細モデルともに,微小変位で約0.30m,有限変位で約 0.25mであった.いずれのモデルも,微小変位の方が 変位は大きく,有限変位に対して約1.3倍であった.

死活荷重時 (D+L,10%減) の桁の鉛直変位は, 簡易, 詳細モデルともに, 微小変位で約 2.0m, 有限変位で約 1.4m であった.死荷重時と同様, 微小変位の方が変位 は大きく, 有限変位に対して, 約 1.4 倍となり, 解析方 法の違いによる影響は大きくなる.

また,詳細モデルでは,R・L それぞれの上弦材の 鉛直変位を算出した.主ケーブルの断面積の低減を考 慮しているL側で,桁の回転による影響でより大きな 鉛直変位が生じることがわかった.

4.2. 解析モデルによる違い

解析モデルの違いについて、複数の部材のモデル 化が異なるため、簡易モデルと詳細モデルを単純に 比較することは難しいが、傾向として以下が明らか となった.

表-5 に解析モデルの違いによる桁の鉛直変位を示す. 死荷重時(D,10%減)の微小変位以外は、いずれも簡 易モデルより詳細モデルの方が変位は大きい.ただし、 その変化率は約8%未満である.

5. おわりに

長大吊橋を対象に, 主ケーブルの断面減少が橋に 及ぼす影響を評価するため構造解析を行った. 桁の 鉛直変位に着目した分析の結果, 簡易モデルと詳細モ デルの違いの影響に比べ, 微小変位解析と有限変位解 析の違いの影響が大きいと考えられる.

今後は、主塔やケーブル部材に及ぼす影響分析を 行い、吊橋等のケーブル部材の状態を評価できる解 析手法に関する検討を行う予定である.

参考文献

1) 国土交通省:道路技術小委員会 HP

表-3 解析ケース 幾何学的 解析 断面積の 荷重状態 モデル 低減程度 非線形の有無 微小変位 簡易 D, D+L 10%, 20% モデル 有限変位 微小変位 詳細 10%, 20% D, D+L モデル 有限変位

表-4 中央支間中央の鉛直変位と変化率

—————————————————————————————————————										
۵ ۵ ۲۲	解析 方法	1			2			3	4	5
_{解初} モデル		D,10%減			D+L,10%減			2/1	①の 比較	②の 比較
簡易	微小	-0.320	-		-1.999	-		6.25	1.26	1.47
	有限	-0.254	-		-1.361	-		5.36	1.00	1.00
詳細	微小	-0.306	L側	-0.47	-2. 051	L側	-2.34	4.92	1.20	1.39
			R側	-0.14		R側	-1.77	12.88		
	有限	-0.256	L側	-0.40	-1. 472	L側	-1.71	4.27	1.00	1.00
			R側	-0.11		R側	-1.23	11.05		

表-5 解析モデルの違いによる比較

	D	,10%減		D+L,10%減			
	①簡易	②詳細	1/2	③簡易	④詳細	3/4	
微小	-0.320	-0.306	1.05	-1.999	-2.051	0.97	
有限	-0.254	-0.256	0.99	-1.361	-1.472	0.92	

図-2 桁の鉛直変位 (D, 10%減)

図-3 桁の鉛直変位(D+L, 10%減)