長大斜張橋における減衰特性の実験的アプローチによる評価 一計画と実施内容一

エム・エム ブリッジ(株) 正会員 〇平井 潤, 正会員 野口 敏広 正会員 新地 洋明, 正会員 渡邉 俊輔

1. はじめに

気仙沼湾横断橋は同湾奥部を南北に横断する橋長 680mの3径間連続鋼斜張橋で,2021年3月6日に供 用が開始された。同橋の構造上の特徴として,主塔が 基部以外にボルト接合部のない全溶接構造である点, 免震支承が水平・鉛直各方向に機能分離して設置され ている点が挙げられ,いずれも減衰性能への大きな影 響が予想されるも従来知見からの推定が困難であった。

このため同年1月上旬,当社所有の大型鉛直起振機 を用いた実橋加振実験を実施した。2日に渡って行わ れた実験を通じて主要モードの減衰特性が明らかにさ れたので,これらをまとめて以下に報告する。

2. 大型鉛直起振機

図.1 ならびに表.1 に起振機の外観と仕様を示す。鉛 直方向に空圧支持された1基あたり13.6tのマスの上下 変位を,ACサーボモーターを主とする駆動系ループで 任意に制御する機構である。2 基の起振機を同相・逆 相で作動することで桁の並進・ねじれいずれのモード も加振可能であるが、本実験では1基のみを用いた。

3. セットアップ

起振機1基を中央径間1/2 長位置に、橋軸より桁幅 方向にオフセットして配置することで桁の鉛直曲げと ねじれの両方のモードを加振できるようにした。計測 器は図.2 に示すように,径間中央部~P12~A2の桁と 主塔,任意のケーブル挙動2ch分を計測可能な形で展 開した。加速度計測にはサーボ型加速度計を,変位計 測にはダイヤルゲージを用いた。

4. 常時微動計測と相関分析によるモード同定

加振実験に先立ち,主要モードの把握を目的として 1時間の常時微動計測を行い,各計測チャンネルの時 刻歴テキストデータに対してFDD法¹⁾を適用すること によって周波数情報を伴った計測物理量間の空間相関 を抽出した。主要な同定ピークに関する分析結果を 図.3に示す。

図.1 起振機外観

表.1 起振機概略仕様

加振周波数	DC – 1 Hz
最大加振力	45 kN@1Hz
装置総質量	30 t
外寸	3,800(W)×2,500(D)×5,133(H)
必要電力	200 Vac, 250 kVA/基
非常停止機構	ディスクブレーキ対応

相関モード比は低次の桁鉛直曲げだけでなく,ねじ れモードおよび高次の桁鉛直曲げモードまで良好に得 られていることが分かる。別報する試験対応解析結果 において,これらの同定ピークが該当する振動モード がよく対応して示されているので参照されたい。

5. 减衰自由振動計測

常時微動計測で把握した複数モードのうち桁鉛直曲 げ対称1次ならびにねじれ対称1次の2モードにつき 加振後の減衰自由振動時挙動を計測して減衰性能の振 幅依存性を分析した。図.4に曲げ1次相当振動数で加 振後の桁中央鉛直加速度(al)の減衰挙動を主塔頂部橋 軸方向加速度(a5)および鉛直支承橋軸方向変位(d1, d2) と併記して示した。桁鉛直曲げのモードは同時に主塔 の橋軸方向曲げ及び鉛直支承すべりと連成している ことが確認できるが,減衰性能と応答レベルの相関に 有意な傾向は無くほぼ一定で,平均的にδ=0.057と既 往の報告例^{3)~5}と比較してほぼ同等の減衰を示した。

キーワード 橋梁,加振試験,起振機,FDD法,減衰自由振動,アクセラランス 連絡先 〒733-0036 広島市西区観音新町一丁目 20番 24号 エム・エム ブリッジ(株) TEL 082-205-5272

図.2 起振機配置位置と計測箇所

図.5 にはねじれ対称1次加振後の減衰挙動を主塔橋 軸直交方向加速度(a6)と比較して示す。鉛直曲げモード と異なり,桁のねじれに伴う主塔の橋直曲げや支承の 滑り連成は見られない。また減衰の振幅依存性には明 らかな底打ち傾向が見られた。

6. アクセラランス評価

共振振動数周りのステップスイープ加振を行い評価 モードのアクセラランスを得た。曲げ対称1次に関す る結果を図.6 に記載する。共振点近傍の位相差勾配か ら求めた減衰定数はδ=0.08 と減衰自由振動計測で得 られた値よりやや大きかった。

図.4 減衰自由振動分析結果(曲げ対称1次)

図.5 減衰自由振動分析結果(ねじれ対称1次)

7. おわりに

加振実験を通じて実橋の減衰特性を明らかにした。 構造上の特徴が減衰特性に及ぼす影響は極端に大きく はなく,従来構造と同等レベルの減衰性能を保有して いることを確認した。

参考文献

1) Brincker, R., et al.: Modal Identification from Ambient Responses using Frequency Domain Decomposition, Proc., of 18th International Modal Analysis Conference, 625-630, 2000

 山口ら: 鶴見つばさ橋の振動実験による動的特性の同定, 土木学会論文集 No.543/I-36,247-258,1996.7

3) 岡内ら: 大振幅加振による長大斜張橋の実橋振動実験,

土木学会論文集 No.455/ I -21, 75-84, 1992. 10

4) 山口ら: 多々羅大橋にみる長大斜張橋のケーブル振動連成とその減衰性能への影響, 土木学会論文集 No.766/ I -68, 309-323, 2004.7