固液混合 MPM による地盤の浸透破壊解析

○東北大学	学生会員	飛彈野 壮真
東北大学	正会員(個人)	山口 裕矢
八戸工業大学	正会員(個人)	高瀬 慎介
東北大学	正会員(個人)	森口 周二
八戸工業大学	正会員(個人)	金子 賢治
東北大学	正会員(個人)	寺田 賢二郎

1. 研究背景と目的

我が国は雨が多く,地形の多くを山地が占めるため,土砂 災害が発生しやすい環境にあり,近年では2018年7月豪雨 や2019年台風19号でも斜面災害が多発している.このよ うな背景から,土砂災害の抑制や被害軽減のための努力が 今後より一層必要となると考えられ,そのためには数値シ ミュレーションによる予測や評価が重要な役割を担う.

しかし,雨水の浸透に伴う斜面崩壊を扱うには,地盤材 料の間隙構造や透水性などの内部構造の変化に伴う複雑な 力学特性の変化を扱う必要がある.また,固体状態にある 土が雨水の浸透で流動する一連の現象を連続的に表現する 必要もある.そこで,複雑な力学特性を混合体理論に基づ いて表現し,固体-流体の遷移を表現しうる MPM(Material Point Method) に着目する混合 MPM¹⁾ が解析手法として適 していると考えられる.

以上から本研究は, 混合 MPM を地盤構造物の浸透崩壊 シミュレーションに適用し, 表現性能を検討することを目 的とする.

2. 解析手法

多孔質体理論に基づき,不飽和土を土骨格-水-空気三相混 合体としてモデル化する.その際,土粒子について非圧縮 性,水・空気について疑似圧縮性を仮定する.また,平均応 力を仮定し,土骨格を弾塑性体,間隙流体をニュートン流体 とし,相互作用力はダルシー則に基づいて与える.以上よ り,次に示す運動方程式と質量保存式を得る.

$$\rho \boldsymbol{a}^{\mathrm{s}} = \nabla \cdot (\boldsymbol{\sigma}' - s^{\mathrm{w}} p^{\mathrm{w}} \boldsymbol{I} - s^{\mathrm{a}} p^{\mathrm{a}} \boldsymbol{I}) + \rho \boldsymbol{b}$$
(1)

$$\boldsymbol{v}^{\alpha s} = \frac{k^{\alpha s}}{\rho^{\alpha R} g} \left\{ -\nabla p^{\alpha} + \rho^{\alpha R} (\boldsymbol{b} - \boldsymbol{a}^{s}) \right\}, \quad \alpha = w, s$$
(2)

$$\left(\frac{\theta s^{\alpha} \rho^{\alpha R}}{K^{\alpha}} - \theta \rho^{\alpha R} c \right) \dot{p^{\alpha}} + \theta \rho^{\alpha R} c \dot{p^{\beta}} + s^{\alpha} \rho^{\alpha R} \nabla \cdot \boldsymbol{v}^{s} + \theta s^{\alpha} \rho^{\alpha R} \nabla \cdot \boldsymbol{v}^{\alpha s} = 0, \quad \alpha = w, a, \quad \beta = a, w$$
(3)

ここに、添字 s, w, a は固-液-気相を示し、上付き"・"は物質 時間微分を表し、 ρ は部分密度、aは加速度、vは速度、 σ' は土骨格の有効応力、 p^{α} は間隙流体の圧力、bは物体力、 θ は間隙率、 s^{w} は間隙水の飽和度であり、 $s^{a} = 1 - s^{w}$ とする. ρ^{aR} は間隙流体の真密度, k^{as} は透水・透気係数, K^{a} は間隙 流体の体積弾性率, cは比水分容量, gは重力加速度である. 不飽和状態の水分特性は van Genuchten 式によって与える. 有効応力 σ' は変形勾配の乗算分解を仮定した有変形弾塑性 構成則によって定めることとし,弾性応答の表現に Hencky 超弾性モデルを,塑性降伏基準に Drucker-Prager モデルを 採用する.

3. 浸透流出解析の検証

本研究で用いる手法が,不飽和土の挙動を表現できてい るかを検証するために,ベンチマークとしてよく知られる 一次元浸透実験²⁾との比較を行う.実験では,飽和土で満 たした非排水の容器を用いる.この容器の天面から空気の 流入を許すことで,天面側の飽和土が不飽和土となる.こ のとき,空気が流入した影響で水が移動し,底面から水が排 出されるので,その排水速度の比較を行う.

図-1 に実験,解析結果である排水速度の時刻歴を示す. 解析結果が実験結果と概ね整合しており,30分以降特に整 合しているため,浸透流出現象を十分な精度で再現できて いることがわかる.

図-1 浸透流出に関する実験結果(Liakopoulos²⁾)と解析結果の 比較

4. 再現解析

本章では、実験において概ね斜面全体が飽和した段階で崩 壊が発生していることから、山口ら³⁾の研究を用いて浸透 過程の解析を行う.実験と、解析モデルを図-2に示す.格 子サイズは0.01×0.01mで、一格子あたり4×4の粒子を配 置する.主なパラメータは表-1に示す.

Key Words: MPM, 不飽和土, 浸透崩壞, 斜面崩壞

〒980-8572 仙台市青葉区荒巻字青葉 468-1 災害科学国際研究所 4F S403-S404, TEL 022-752-2132, FAX 022-752-2133

実験と再現解析の浸透過程を3に示す.図-3から,放射 状に浸透すること,浸透する速度が整合していることがわ かるので,浸透について十分な精度で表現できているとい える.また,解析結果が実験よりも早い段階で崩壊してい ることがわかる.さらに,実験で起きている段階的な崩壊 を表現できておらず,終局時の崩壊形状に違いがある.そ こで,図-4に示すように,実験終局時の形状と初期形状と の比較から,崩壊するような不安定な領域(橙色の実線で囲 まれた領域)を考える.これを,解析結果の崩壊初期の累積 塑性ひずみの分布に重ねると,解析結果における不安定な 領域と重なることがわかる.このことから,巨視的な崩壊 形状はとらえられていると考えられる.

	表–1	本研究で使用する材料パラメータ	
--	-----	-----------------	--

パラメータ	記号(単位)	値
土粒子密度	$ ho^{ m sR}~(m g/cm^3)$	2.71
水密度	$ ho^{ m wR}~(m g/cm^3)$	1.00
Young 率	E (MPa)	3.00
Poisson 比	ν	0.30
粘着力	c (kPa)	0
内部摩擦角	ϕ (°)	40.0
ダイラタンシー角	ψ (°)	0
水の体積弾性率	K ^w (GPa)	2.19
初期飽和度	n^{0s} (%)	10.0
飽和透水係数	$k^{ m ws}$ ($\mu m m/s$)	42.1
最小飽和度	s ^{wr} (%)	0
最大飽和度	s ^{ws} (%)	100

5. 結論

不飽和土の複雑な力学特性の変化を考慮した浸透・崩壊 から流動までの一連の現象再現への適用が期待される混合 MPM に着目し,表現性能を検証した.浸透流出解析による 検証の結果は,実験結果に概ね整合しており,十分な精度が 確認できた.浸透破壊実験の解析については,浸透の仕方・ 速度は概ね整合しており,十分な再現性が得られた.崩壊 については,解析結果が早い時間に崩壊し,最終形状にも違 いがあるが,不安定な領域を比較すると概ね整合している ことから,巨視的な崩壊形状をとらえられたと考えられる.

参考文献

- Yamaguchi, Y., Takase, S., Moriguchi, S. and Terada, K.: Solidliquid coupled material point method for simulation of ground collapse with fluidization, *Computational Particle Mechanics*, Vol. 7, pp. 209–223, 2020.
- 2) Liakopoulos, A.: *Transient flow through unsaturated porous media.*, PhD thesis, University of California at Berkeley, 1964.
- 山口裕矢,高瀬慎介,森口周二,寺田賢二郎: 地盤流動化の数 値解析を目的とした MPM の提案と適用性の検討,計算工学 講演会論文集 Proceedings of the Conference on Computational Engineering and Science, Vol. 24, p. 3, 2019.

図-4 予想される実験,解析結果の不安定領域の比較

図-3 実験と再現解析(飽和度と累積塑性ひずみ分布)