光ファイバを用いた凍土モニタリング技術の検証

鹿島建設(株) 正会員 ○佐藤一成 辻 良祐 吉田 輝 永谷英基 那須郁香 今井道男 川端淳一 ケミカルグラウト(株) 正会員 相馬 啓 塩屋祐太 佐野夕薫

1. はじめに

地盤凍結工法では地中温度や地中変位の計測は凍土 造成管理において必須である.従来,その計測には白金 温度計や傾斜計などが採用されてきたが,大規模な凍 土を造成した場合,計測点数が増加し計測設備の肥大 を招いてきた.その問題点を解消するため,筆者らはケ ーブルそのものがセンサとなる光ファイバを使用し, 地中温度および地中水平変位を1本のケーブルで同時 計測する技術を検討している.本稿ではその検証実験 の結果を報告する.

2. 光ファイバの計測方法

光ファイバセンサは計測方式の違いにより表-1 に 示す3つの計測方法¹⁾に分類される.温度計測ではラマ ン方式が広く利用されており,福島第一原子力発電所 の凍土方式遮水壁²⁾で地中温度を計測している実績が ある.しかし,ラマン方式は温度変化のみをとらえるも ので,ひずみを計測できない.ブリルアン方式は,理論 的にはひずみ・温度を同時に計測可能だが,精度の問題 で実用化には至っていない.レイリー方式は高精度か つ高分解能なひずみ計測が可能で,この方式を用いた ひずみ計測結果から変位計測が可能であることが既往 の研究で報告されており³⁾,温度に関しても計測可能で あることを確認している¹⁾.本報文では,原位置凍結実 験を実施し,レイリー方式でのひずみ・温度の同時計測 について検討した結果を報告する.

3. 原位置凍結実験4)

(1)実験レイアウト

原位置凍結実験⁴⁾の実験レイアウトを図-1,現地の ボーリング柱状図を図-2に示す.凍結範囲はGL-10m ~-20m とした.光ファイバはK-1 (二軸式傾斜計), S-2 (測温管)に併設し,それぞれ地中温度および地 中水平変位の結果を比較した.

凍結管は 1m 間隔で 3 本,一列に配置し,壁状に凍 土を造成した.測温管には,深度 2m おきに電気式温 度計(白金抵抗素子)を配置している.地中水平変

表-1 計測方法¹⁾

	ラマン	ブリルアン	レイリー
要因	分子振動	分子振動 による音響波	粒子による光の散乱
原理	散乱光の強度が温 度に依存	散乱光の波長がひ ずみと温度に依存	散乱光の強度が密度な どに依存
計測物理量	温度変化	ひずみ変化 (温度変化)	ひずみ変化 (温度変化)
特徴	 散乱光強度の相対 的な変化から温度 変化算出 ひずみ影響を受け ない 	散乱光の波長(絶対 量)からひずみ変化 を算出 温度影響を受ける	散乱光強度の相対的な 変化からひずみ変化算 出 温度影響を受ける
使用ファイバ	主に MMF	主に SMF	主に SMF
計測方式例 (接続)	ROTDR(片端)	BOTDR(片端) BOTDA(両端) BOCDA(両端)	COTDR(片端) OFDR(片端)
0.5m 0.5m 0.5m 0.5m 0.5m 光ファイバ併設(鉛直) * * * * * * * * * * * * * * * * * * *			
0.5m S-4 S	215-11	ν <u> <u> </u> </u>	凍結範囲

キーワード:地中変位,凍土,モニタリング,光ファイバセンサ,変位計測 連絡先 〒182-0036 東京都調布市飛田給 2-19-1 鹿島建設(株)技術研究所 TEL 042-489-6465 位は,深度 2m 間隔に設置した二軸式傾斜計を用い, 深度 26m 地点を仮想不動点として計測した.

温度計測用の光ファイバの外観を写真-1,構造を 図-3,地中水平変位計測用の光ファイバの外観を写 真-2,断面構造を図-4に示す.

(2) 実験結果

図-5に地中温度の計測結果を示す. 光ファイバの 計測結果は白金抵抗素子の結果と概ね一致することを 確認した.また,図-6に示すように,白金抵抗素子 の計測結果を基準とした場合,光ファイバの計測結果 はおおよそ±1.0℃の範囲で収まっている.以上のこ とから,光ファイバは白金抵抗素子と同精度で計測可 能と考えられる.

図-7 に地中水平変位の計測結果を示す.凍結範囲 に注目すると,光ファイバの計測結果は凍結膨張によ る地中変位が増大する傾向をとらえている.しかし, 計測された値は二軸傾斜計と比較し最大で10mm ほど 差があった.原因としてガイド管と光ファイバの接着 方法や,傾斜計の測定ピッチによる誤差の影響である ものと考えられる.

4. まとめ

原位置凍結実験にて、従来技術とレイリー方式によ る光ファイバの計測精度に関して、比較検証を行った. その結果、地中温度についてはレイリー方式で従来技 術と同等の精度が確認できた.地中水平変位について は従来技術と最大で10mm 程度の差があり、改善点が明 らかになった.今後も、凍土モニタリング技術の合理化 に向けて光ファイバによる地中温度及び地中変位の同 時計測技術の開発を進める予定である.

参考文献

- (2) 笹倉剛,今井道男,久保田光太郎,辻良祐,永谷英基, 小柳津悠:高精度光ファイバセンサを用いたひずみ・変 位計測の検証実験,土木学会第75回年次学術講演会, 2020.(投稿中)
- 永谷英基、山口功、吉田輝:凍土方式遮水壁の光ファ イバ式温度計による地中温度計測-凍土方式による遮水 技術に関するフィージビリティ・スタディ事業(その 6)-、土木学会第70回年次学術講演会、III-270、539-540、2015.
- 今井道男,一宮利通,露木健一郎,早坂洋太,太田伸之: 光ファイバセンサによる 10 年間の PC 橋梁ひび割れモ ニタリング,土木学会論文集 A1, 75(1), 17-25, 2019.
- 4) 那須郁香,吉田輝,辻良祐,相馬啓,塩屋祐太,佐野夕 薫:ICECREATE 工法を用いた実大実験による凍土厚保 制御手法の検証,第75回地盤工学講演会,2020.(投稿 中)

図-7 地中水平変位計測結果