プレキャスト工法を適用した地上式 PCLNG タンクの設計

鹿島建設(株) 正会員 〇岩本直樹 向市清司 菊地達哉 田口勝則 松浦正典 東京ガスエンジニアリングソリューションズ(株) 加藤健太 金子賢太郎 東京ガス(株) 外内和輝

1. はじめに

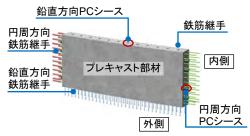
東京ガス(株)日立 LNG 基地 (茨城県日立市) では、2 号 LNG (液 化天然ガス) タンクの建設を進めている。2号 LNG タンクは地上 式 PC (プレストレストコンクリート) LNG タンクであり、PC 防 液堤に日本で初めてプレキャスト工法を適用して工期短縮、品質 向上および生産性向上を図った。プレキャスト部材は「P3wal1®」 ¹⁾を適用した。ここでは、プレキャスト工法のねらい、設計上の 課題と工夫について報告する。

2. 構造概要

地上式 PCLNG タンクは、機械工事による金属製の内槽、内外槽 間の保冷および外槽と、土木工事による PC 防液堤、基礎版およ び基礎杭からなる。2 号 LNG タンクの概略図を**図-1** に示す。PC 防液堤は内径 88.20m、高さ 43.65m であり、容量 23 万 kL は日本 最大級である。適用基準は「LNG 地上式貯槽指針」²⁾である。


3. プレキャスト工法のねらい

プレキャスト工法の適用で、PC 防液堤工事そのものの工期短縮 が可能となる。また、PC 防液堤より内側での土木工事を皆無にす ることができ、機械工事の早期着工と効率化によるタンク全体 図-2 プレキャスト部材 (P3wall®) 概略図 の工期短縮が見込めた。2号 LNG タンクの工期 (タンク工事の本 格着工からマンホール閉)は、一般的に 40 ヶ月であるのに対し $28 \, r$ 月で計画した(表-1)。また、プレキャスト部材は工場で製 造するため安定した品質確保が期待できる。さらに、省力化でき る工法のため、近年の建設技能工の減少に対しても有効であり、 生産性向上に寄与できるものと考える。


4. プレキャスト工法の概要 プレキャスト部材 P3wall®の概略を**図-2** に示す。P3wall®は、 陸上輸送や製造工場内で

の制約から一枚あたりの 重量が約240kN以下となる ようにし、全体で740枚を 使用する計画とした。

接合部である鉛直方向 と水平方向継目の概略を 図-3 に示す。鉛直方向継

2号 LNG タンク概略図 図-1

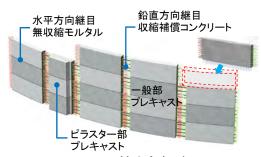


図 — 3 接合部概略図

て法による工事工程の比較

及一↑ 工法による工事工程の比較																						
		暦日(ヶ月)	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
		基礎																				
		防液堤																				
従来工法		PC緊張																				
/_	機械	内槽・外槽																				
		保冷																				
		基礎																				
		防液堤																12	ケ丿	打短	縮	
今回工法		PC緊張																				
工丛	444.44	内槽・外槽																				
	機械	保冷																				

キーワード:プレキャスト工法、地上式 PCLNG タンク、工期短縮、品質向上、生産性向上、CIM 連絡先 〒107-8502 東京都港区赤坂 6-5-30 鹿島建設(株)土木設計本部構造設計部 TEL 03-6229-6656

目は収縮補償コンクリートを用いた場所打ちコンクリートであり、鉄筋 は機械式継手とした。水平方向継目は高さ約 20mm の隙間を無収縮モルタ ルで充填し、5章で後述する新たに開発した継手構造により鉄筋を接続 する。接合面は、一般的な場所打ちコンクリートの打継目と同様な処理 を行った。

5. 設計上の課題と工夫

プレキャスト工法の適用に際し、接合部の一体性や液密性を満足する ことが設計上の課題となった。そこで、接合部が一般的な場所打ちコン クリートによるPC防液堤と同等の性能を有していることを検討するため

に、接合部の鉄筋継手の耐力試験3、材料の充填性や強度特性試 験、液密性試験等を実施した。これにより、所定の性能を有して いることを確認した。構造解析の工夫として PC 防液堤と基礎版を 一体とし、非対称荷重を考慮できる3次元モデルを用いた($\mathbf{Z}-\mathbf{4}$)。 PC 防液堤と基礎版はシェル要素、基礎杭はバネ要素、PC 防液堤と 基礎版は剛結とした。これは一般的な場所打ちコンクリートによ 表-3 PC 防液堤の評価項目と評価方法 る PC 防液堤の設計と同じ手法である。ただし、要素分割に際して は、接合部を評価できるよう配慮した。接合部を含む PC 防液堤の 設計では、表-2に示す要求性能を、表-3に示す評価項目と評価 方法で満足していることを確認した。

別の課題として、プレキャスト部材 P3wall®内の鉄筋と PC 鋼材、 埋込み金物の干渉の懸念があった。また、P3wall®全体割付と機械 工事の金物(屋根骨アンカーなど)の取合い調整も課題となった。 そこで、2次元図面での干渉チェックと併用して、CIMによる事前 の確認を行ない、干渉を回避した(図-5)。また、機械工事と事 前に綿密な打合せを実施し、屋根骨本数の変更を含む干渉回避の 調整を行った。関係するすべての干渉を回避しつつ、P3wall®に共 通する規則的な鉄筋・PC 鋼材の配置パターンを設定した。こうし て、イレギュラーな配置パターンを有する部材が生じないよう配 慮して設計することで、生産性向上を図った。また、CIM による 視覚イメージを建設技能工と共有することにより、円滑な製造と施 工にも繋げることができた。

6. まとめ

2 号 LNG タンクの PC 防液堤の詳細設計は 2017 年 4 月から開始し 2018年10月に完了した。この成果を受けて工事を進め、2019年8 月にプレキャスト部材 P3wall®の設置を完了した。現在は PC 鋼材の 緊張作業を行っており、2020年12月に工事は完了する予定である。

参考文献

- 1) 鹿島建設(株): プレスリリース 日本初! PCLNG 地上式タンク の防液堤をプレキャスト工法で構築、2018.5.10
- 2) (一社)日本ガス協会:LNG 地上式貯槽指針、2012
- 3) 大窪一正ほか:施工性に優れたプレキャスト部材接合継手その1 (部材実験)、土木学会全国大会年次学 術講演会、V-337、2017.9

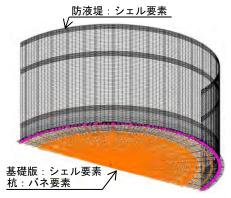


図-4 構造解析モデル

表-2 PC 防液堤の要求性能

性能の分類	耐荷性能, 液密性能
常時性能	所定の強度を有する。 漏液後の液密性を損なわない。
レベル 1 耐震性能	有害な変形が残留しない。 漏液後の液密性を損なわない。
レベル 2 耐震性能	変形が残留しても漏液後の液密性および 外槽の目標性能を損なわない。

	区分	評価項目	評価方法						
常時	通常運転時	ひび割れ	・ひび割れの評価(発生するひび割れ幅 w は許容ひび割れ幅 w 以下)・応力の評価(コンクリートの圧縮応力 σ_c は $0.4f_{ck}$ を超えない,鉄筋の引張応力は f_{tk} 以下など)						
時性能評価		ひび割れ 発生	・ひび割れ発生の評価(曲げモーメントおよび軸方向力による コンクリートの縁引張応力が、 コンクリートの曲げひび割れ 強度の特性値を超えないなど)						
		断面破壊	・断面破壊の評価 曲げモーメントおよび軸方向 力、面外せん断および面内セ ん断力に対して,以下を評価 γ_i 、 $S_a/R_a \le 1.0$ ここに、 S_a :設計断面力						
	強風時 / 耐圧試験時 水張試験時	断面破壊							
	ベル 1 耐震 性能評価	断面破壊							
	ベル2耐震 性能評価	断面破壊	R _d :設計断面耐力 γ::構造物係数 また,鉄筋の引張応力はf _* 以下						
		断面破壊	\$ 7C, \$\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{						
	漏液後 性能評価	液密性	・液密性の評価(曲げモーメントおよび軸方向力によるコンクリートの残留圧縮領域を部材断面に確保。残留圧縮領域は10cm以上を確保することを基本)						

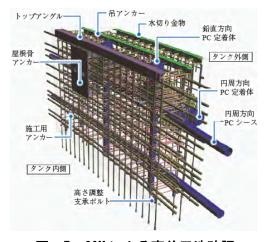


図-5 CIMによる事前干渉確認