広帯域 AE センサを用いた衝撃弾性波法による PC 桁の健全性評価に関する研究

(一社)	日本建設機械施工協会	施工技術総合研究所	正会員	○勝呂	翔平
(一社)	日本建設機械施工協会	施工技術総合研究所	正会員	榎園	正義

- (株) 高速道路総合技術研究所 正会員 岩生 知樹
- (株)高速道路総合技術研究所 正会員 萩原 裕樹

1. はじめに

PC 橋梁の維持管理において, 点検は PC 部材の外観 目視や打音検査が主体であり, PC 橋梁の健全性を定量 的に評価するモニタリング技術は確立されていないの が現状である.特に, PC 橋の維持管理においては PC 鋼 材およびコンクリート部材の健全性を把握することが 重要となる.

本研究は、実橋のプレテンション PC 桁を対象に、独 自に開発した広帯域 AE センサを利用した衝撃弾性波 法による計測実験を行い、弾性波の伝播特性の変化か ら PC 桁コンクリート部材の健全性を評価するモニタ リング手法について検討を行ったものである.

2. 実験概要

2.1 衝撃弾性波法の原理

一般に、コンクリート部材中の弾性波は伝播経路に 関する諸情報を含んだものとして扱われている.図1に 示すように、シュミットハンマによって発生した弾性 波は、部材の厚さと比べて長い距離で受信した場合、コ ンクリートの境界を様々な角度で屈折や反射を繰り返 しながら伝播する多重反射波動となる.

この弾性波の伝播状況から,適切な周波数帯を抽出 し,健全部と劣化・変状部を相対比較することによって, コンクリート部材の劣化状況を把握することで,健全 性の評価が可能ではないかと考えた.

2.2 実験対象プレテンション PC 桁

対象とした PC 橋梁は,ASR および塩害等による複 合劣化により架け替えが予定されている支間 13m のプ レテンション方式 PC 単純 I 桁橋であり,34 本の I 桁 を並べ PC 鋼棒で横締めした構造である.

図1 衝撃弾性波法による弾性波計測の原理

(a) 打撃入力状況

(b)現場状況

写真1 弾性波計測状況

図2 弾性波計測システムと AE センサ配置

キーワード 広帯域 AE センサ,衝撃弾性波法, PC 桁,モニタリング,健全性評価,弾性波 連絡先 〒417-0801 静岡県富士市大渕 3154 (一社)日本建設機械施工協会 施工技術総合研究所 TEL0545-35-0212

2.3 実験方法

(1) トリガ用,受信用のAEセンサ,弾性波の入力

AE センサは,対象物に接着固定した状態で数 Hz~ 数百 kHz に感度を有する独自開発の広帯域 AE センサ を採用し,弾性波の入力は打撃力に再現性のあるシュ ミットハンマを用いた.本実験では,8本の PC 桁(G01, G02, G04, G06, G09, G11, G13, G15) に,広帯域 AE

センサをそれぞれ6箇所設置した.

(2)計測システムおよび実験条件

衝撃弾性波の計測システムは、図2 に示すように広 帯域 AE センサ,ハイパスフィルタ,波形記録装置の組 合せによりシステムを構築した.なお,本橋におけるハ イパスフィルタの設定は1kHz とした.また,シュミッ トハンマによる弾性波の入力は単発現象であることか ら,再現性を考慮して各3回ずつ計測した.

実験結果と考察

衝撃弾性波法によって計測した受信波形の例を図 3 に示す.

(1) 受信波形の変化(最大電圧振幅 mVp-p)

各 PC 桁の伝播距離と平均受信波形振幅との関係を 比較して図4(a)に示す.タイプAのPC桁は受信波 形振幅が線形的に徐々に減衰していることから健全な PC桁と判断される.一方,フランジ下部に軸方向のひ び割れやはく落等の変状部のあるタイプBのPC桁G01, G02,G03では,伝播距離2~10m測定区間での受信波 形が大幅に減衰している.

(2) 伝播時間の変化(走時曲線)

健全な PC 桁と判断したタイプ A は、図 4 (b) に示 すように伝播距離と伝播時間との関係 (走時曲線)に比 例関係が認められる.一方, PC 桁 G01,G02,G04 では, 伝播距離 6~10m の測定区間で伝播時間が大幅に遅く なっており,ひび割れ等の劣化が進展した状態を反映 しているものと考えられる.

(3) 見掛けの伝播速度の変化

図 4 (c) に示すように, PC 桁 G 01 および健全な PC 桁 は,伝播距離 0~2m 区間では伝播速度が約 5000m/s,0 ~4m で 4800m/s 以上と速く,ひび割れ等の無い健全な 状態と考えられる.また, PC 桁 G01 の 6~10m 区間, および G02, G04 では,伝播距離の増加に伴い,伝播

(a) 健全な PC 桁 (G13)
(b) 劣化した PC 桁 (G02 桁)
図 3 受信波形の比較例 (PC 桁 G13, G02)

速度が大幅に低下していることから、ひび割れ等の 変状・劣化による影響ではないかと考えられる.

4. まとめ

衝撃弾性波の受信波形の伝播特性の変化に着目する ことによって, PC 桁コンクリート部材の健全性の評価 が可能であり,モニタリング手法として有効と考えら れる.

参考文献 榎園正義,谷倉 泉,萩原直樹,豊田雄介:広帯域 AE センサを用いた衝撃弾性波法による健全性調 査システムの開発,日本非破壊検査協会 平成 29 年度秋季講演大会, pp57~60, 2017