機械式定着を施したせん断補強鉄筋のせん断補強性能

東京鉄鋼(株)	正会員	〇仁平 篤志	正会員	後藤 隆臣
鹿島建設(株)	正会員	平 陽兵	フェロー	山野辺慎一

1. はじめに

せん断補強鉄筋は,部材のせん断破壊防止のために 配筋されるが、両端が半円形フックであるが故に配筋 が困難となるケースがある.これを改善する方法の一 つとして、ねじ節鉄筋の端部に機械式定着体を嵌合し、 グラウト充填によって固定されたせん断補強鉄筋を用 いる方法が挙げられる.半円形フックと機械式定着体 の違いを図-1に示す. こうした工法は、コンクリート 工事の生産性を向上させる手法として国土交通省から も推奨されており¹⁾, 今後採用されるケースが増えてい くものと考えられる.

土木工事における機械式定着工法の採用やその適用 範囲に関する判断材料として、(一財)土木研究センタ - (以下, 土研C) 等の公的認証機関における建設技術 審査証明書(以下,審査証明)が用いられている¹⁾.審 査証明では、土木学会の指針2)を参考に、必要となる性 能や適用範囲などが審査されている.

今回,審査基準3に基づき,機械式定着体を用いたせ ん断補強鉄筋のせん断補強性能を半円形フックと比較 して評価したので報告する.なお、本試験に用いた機械 式定着体は、使用する鉄筋の母材破断を保証するため に、写真-1に示すように従来の袋型から貫通型へと改 良したものである.

図-1 半円形フックと機械式定着の配筋の違い

写真-1 定着体(左:従来品,右:改良品)

2. 実験概要

(1) 試験体概要

本実験の試験体寸法は幅 600mm, 厚さ 500mm, 長さ 4,600mm であり、 せん断スパン比 a/d は、 せん断スパン aが1,200mm, 有効高さdが440mmで2.7とした. コ ンクリート設計基準強度は 24N/mm² で計画した. 各試 験体の主鉄筋には SD490 の D35 を使用し、片側に 4 本 配筋した. 配力鉄筋は, SD345 の D16 を使用した. 試 験体は、配筋は同一とした上で、No.1 はせん断補強鉄 筋の両端を半円形フックとしたもの, No.2 は両端に機 械式定着体を嵌合し, エポキシ樹脂グラウトを充填し て固定したものをそれぞれ用いた.概要図を図-2に示 す.また、本試験体のせん断余裕度は0.76とし、せん 断破壊が先行するように設計した.

(2) 試験方法

試験体への載荷は、写真-2に示す機構にて正負交番 載荷とした.加力は,正側と負側で各1回の繰返し載荷 を行った後,破壊まで行った.

また、本実験に使用した材料の強度を表-2に示す.

写真-2 載荷状況(赤:正側, 黄:負側)

キーワード:機械式定着工法, せん断補強鉄筋, せん断耐力 連絡先 〒323-0819 栃木県小山市横倉新田 520 東京鉄鋼株式会社 TEL: 0285-28-1771

	No. f'_c		主鉄筋(SD490)			せん断補強鉄筋(SD345)		
		f'c	f_{sy}	f_{su}	\mathcal{E}_y	f_{sy}	f_{su}	ε_y
			N/mm ²	N/mm ²	μ	N/mm ²	N/mm ²	μ
	1	27.3	530	715	2,723	377	568	1,960
	2	28.4						
f'_{e} : コンクリートの圧縮強度、 f_{w} : 鉄筋の降伏強度、 f_{w} : 引張強さ、 ε_{v} : 降								ε.: 隆伏

表-2 材料強度

 f'_{c} ; コンクリートの圧縮強度, f_{sy} ; 鉄筋の降伏強度, f_{su} ; 引張強さ, e_{y} ;降伏 ひずみ

3. 実験結果

各試験体のひび割れ状況図を図-3,図-4に示す. ひび割れは、定着方法の違いの影響はなく、同様の発生 状況であることがわかる.

荷重-変位曲線を図-5 に示す. No.1 試験体は, せん 断耐力の計算値 (1,015kN) を超えて, 1,244kN でピーク となり, せん断破壊となった. ここで, せん断耐力の計 算値とは, コンクリート標準示方書⁴⁾の棒部材の設計せ ん断力 (*V_{yd}=V_{cd}+V_{sd}*) 算定式より算出したものである.

一方, No.2 試験体は最大荷重が 1,466kN となり,曲げ 耐力時せん断力(1,338kN)を上回り,曲げ破壊のよう な破壊形態となった. 図-6 に主鉄筋の荷重-ひずみ曲 線を示す. No.2 試験体が曲げ破壊形態となったのは, 主鉄筋の降伏が起きたことによるものである. 図-7 に せん断補強鉄筋のひずみ分布を示す. S4 の位置でせん 断耐力の計算値に近い 1,000kN 載荷時に機械式定着を 施したせん断補強鉄筋が降伏していることから,せん 断補強性能を確認する試験体としての設計には問題が ないと考える. 既往の研究⁵では,機械式定着体を用い たせん断補強鉄筋は,高応力繰返し載荷時のコンクリ ート中の抜け出し量が半円形フックより小さく,最大 耐力が大きいとされている.よって,終局時の破壊形態 の違いは,各々の定着体が持つコンクリートへの支圧 面積の違いによるものと考えられる.

4. まとめ

本実験より,改良した機械式定着を備えたせん断補 強鉄筋は,半円形フックのせん断補強鉄筋と比較して も十分なせん断補強性能を有していることを確認した. 参考文献

- 1) 機械式鉄筋定着工法技術検討委員会:機械式鉄筋 定着工法のガイドライン,2016
- 2) 土木学会:コンクリートライブラリー128 鉄筋定着・継手指針[2007 年版],2007
- 柴田辰正他:建設技術審査証明における機械式鉄 筋定着工法,土木技術資料,第 59 巻,第 7 号, pp.56-59,2017.
- 4) 土木学会: コンクリート標準示方書[設計編], 2017
- 平野勝識他:SRC 中空橋脚におけるせん断補強筋の定着に関する実験的検討,構造工学論文集,第 55A 巻, pp.1094-1101,2009

