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1. INTRODUCTION 
Recently, amounts of infrastructures are approaching their designed life, thus the number of defected concrete structures 
is increasing rapidly. In order to apply the proper maintenances, inspections are conducted regularly on concrete 
structures. The regular inspection is based on visual inspection, and non-destructive inspections for more detailed 
information on the interior condition. Among non-destructive inspections, hammering sound test is one of the most 
popular methods because of its feasibility and low-cost advantages. In addition, a rotary hammering test that improve 
the efficiency of the conventional hammering sound test was also widely used. However, hammering sound tests are 
highly depend on the inspector’s experiences of deterioration detection and sound data analysis which include the 
information on the defect inside concrete is not enough. Therefore, in this study, the objective is to develop an accurate 
and efficient evaluation method of the concrete structure soundness based on hammering sound test data using the 
convolutional neural network (CNN). 
 
2. ASSESSMENT MODEL 
2.1 Experimental Data and Data Processing 
Experimental data from rotary hammering test conducted on mortar cuboid 
with artificial defect was used as the learning data to feed the classification 
model. Details of the experiment is explained as shown in Fig.1, based on 
10×10×40 cm mortar cuboid specimen, artificial defect using styrofoam was 
used to simulate defect inside concrete structure. There were four different 
sizes of artificial defects, 2×3×5 cm, 2×5×10 cm, 2×5×15 cm, 2×7×20 cm.  
Images of spectrograms from acoustic data, as shown in Fig.2, was used as the 
learning data. In a spectrogram, there are three key features of acoustic data. 
The first feature is the maximum amplitude, it tends to be obviously greater of 
a deteriorated structure than of a soundness one. The second feature is the time 
duration which deteriorated structures are also greater than normal ones. Last 
key feature is the distinct pattern of frequency characteristic which is gained 
from applying Fourier transform. By using the spectrogram, all these three 
features can be used as the references to for classification. 
 
2.2 CNN Classification Model 
The CNN model is shown as the flow chart Fig.3. Input data contains 
spectrogram generated from the previous procedure, and 
classification of each spectrogram data as labels. Base on the input 
labels and the output from classification model, bias and weights are 
updated by the optimizer. As the learning proceeds, loss function 
decreases, while the accuracy of prediction increases respectively, as 
shown in Fig.4, and both tends to be stable. Finally, data that was not 
used in the learning process was supplied to the classifier model to 
predict its defect class. In this study, 80% of the data prepared were 
used as learning data, and 20% of the data were used as validation 
data. The classifier was tested by validation data to detect the defect level of 
experimental data, and the final accuracy of validation became 91.3%. 
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Fig.1 Motar Cuboid 

Fig.2 Spectrogram  
 

Fig.3 CNN Classification Model 

Fig.4 Prediction Accuracy 
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3. VALIDATION 
3.1 Validation on Inspection Data 
The CNN model was validated with actual inspection data. The 
inspection data used in the validation were the results by rotary 
hammering inspections of 4 bridges A~D. For each bridge, rotary 
hammering test was conducted on two intact areas, and two defected 
areas while the interior conditions were not clarified. Therefore, it is not 
feasible to classify the defects’ sizes. Thus, in this validation, instead of 
the defects’ sizes, the labels were considered as the level of defects, where 
level 1 is equivalent to normal, and level 2~5 are equivalent to the defect 
size of 2×3×5 cm,2×5×10 cm,2×5×15 cm,2×7×20 cm respectively. 
Inspection data was converted into spectrogram and inputted them into 
the CNN model for soundness prediction. The results of the predictions 
are shown as Table.1. The defected levels of normal areas are correctly 
predicted as level 1 in 5 inspection points out of a total number of 8. At 
the same time, for the defected areas, except for one inspection point, the 
predictions of defected levels of others are all resulted in at least level 2. 
 
3.2 Comparison with Present Method  
Furthermore, the results were compared to consequences based on a 
previous study that used a three-dimensional diagram with amplitude 
ratio, time duration and frequency of hammering sound test data. As 
shown in Fig.5, the present method uses the distance from the origin point 
on the diagram to represent the defect level. The same data sets were also 
used in the evaluation by the CNN model. The comparison between the 
CNN model and 3-D diagram were shown in Table.2 and Table 3 
seperated by the soundness of bridges. At first, regarding the healthy 
bridges, 5 of 8 of healthy spots are predicted correctly by the CNN 
classification model. However, there are three of them predicted as over 
defect level 2. Comparing to the 3-d diagram method, the distance from 
origin of those bridges are also higher than the others. It can be considered 
that those three spots could be closer to be defected. Next, regarding the 
deteriorated bridges, all 8 spots are predicted to be higher than defect level 
1. According to the 3-D diagram, the distances of all spots are obviously 
larger than that of the normal bridges, which means the CNN model also 
successfully detected all deteriorated structures.  
 
4. CONCLUSIONS 
In this study, the rotary hammering sound test risk assessment of concrete structure using convolutional neuron network was discussed. 
Firstly, rotary hammering test data was processed to spectrogram and inputted to a CNN model for training. Then the trained CNN 
model was validated using experimental data. At last, the CNN model was tested with inspection data of existing deteriorated bridges. 
The prediction accuracy of the CNN model based on spectrogram of acoustic signal from hammering sound test resulted in 91.3%, 
which proved that spectrogram could be an appropriate input data for assessment model. The prediction of defect level by the CNN 
model showed similar trends as the present investigation method, thus the CNN model using the rotary hammering test could be useful 
for actual bridge inspections. 
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Table.1 Predicted Deteriorated Level 
 A B C D 
Normal 1 3.4 2.7 1.0 1.0 
Normal 2 1.0 3.4 1.0 1.0 
Defected 1 3.1 2.0 3.5 2.6 
Defected 1 4.3 3.3 2.3 1.4 

 
Fig.5 Present investigation method 
Table.2 Results Comparison - Normal 

Location 
CNN Model 3-D Diagram 

Rank Level Rank Distance 
B2-N 1 3.4 1 2.8 
A1-N 1 3.4 3 1.8 
B1-N 3 2.7 2 2.4 
D1-N 4 1.0 4 1.5 
D2-N 4 1.0 5 1.5 
C1-N 4 1.0 6 1.5 
C2-N 4 1.0 7 1.4 
A2-N 4 1.0 8 1.3 

Table.3 Results Comparison - Deterioorated 

Location 
CNN Model 3-D Diagram 

Rank Level Rank Distance 
A2-D 1 4.3 1 39.7 
C1-D 2 3.5 6 18.9 
B2-D 3 3.3 5 21.3 
A1-D 4 3.1 3 25.5 
D1-D 5 2.6 2 26.8 
C2-D 6 2.3 4 22.4 
B1-D 7 2.0 7 9.6 
D2-D 8 1.4 8 8.1 
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