PC 鋼材の曲げ上げ部破断が PCT 桁の曲げせん断挙動に与える影響に関する3次元解析

京都大学 正会員 平野裕一 服部篤史 河野広隆

1. はじめに

PCT 桁において、グラウト未充填に起因する PC 鋼材の曲げ上げ部~定着部の破断が問題となってい る.本研究ではPC鋼材の曲げ上げ部破断がPCT桁 の曲げせん断挙動に与える影響を3次元 FEM 解析 により検討した.

2. 解析概要

2.1 解析モデルの形状、配筋、材料特性および載荷

1962 年に建設された N 橋を参考に全長モデルを 作成した.その断面図を図1に示す.この断面が橋 軸全長に続く構造とし、スパン長を 22200mm とし た. 境界条件は下部構造との接触面二カ所の中央を 線で高さ方向に固定し,そのうち片方を橋軸方向に も固定した.また、両端部の幅方向に対する中心線 で幅方向に固定した. せん断補強筋(D13), 組立て筋 (D10)の配筋図を図 2, 3 に, PC 鋼材(8-12 o 5)の配 筋図を図4,5に示す.PC鋼材は実橋の曲げ上げに 沿うように折り曲げた.8本中3本を上縁定着し,5 本を端部定着した. 材料特性を表1に示す. 荷重は 図5に示す載荷板の中央点に強制変位を与えること で、等曲げスパン 5000mm または 500mm で対称 2 点載荷した.

京都大学 学生員〇北岸政樹 土木研究所 正会員 吉田英二 150 550 q 500×4本 300×10本 600×9本

表1 解析モデルの材料特性

コンクリート	構造ソリッド要素
	ヤング率 : 3.32 × 10 ⁴ MPa
	圧縮強度:50MPa
	圧縮挙動:線形+Thorefeldt モデル
	引張強度:5MPa
	引張挙動:線形+Hordijk モデル
せん断補強筋	埋め込み鉄筋要素
組立て筋	(コンクリートと完全付着)
	圧縮,引張挙動:バイリニア型
	ヤング率 : 2.00×10 ⁵ MPa
	降伏強度:295MPa
	引張強度:440MPa
PC 鋼材	付着すべり埋め込み鉄筋要素
	(コンクリートとの間に滑り有)
	圧縮, 引張挙動: バイリニア型
	ヤング率 : 2.00 × 10 ⁵ MPa
	降伏強度:1350MPa
	引張強度:1550MPa

FEM 解析, グラウト未充填, PC 鋼材破断, PCT 桁 キーワード 連絡先 〒615-8540 京都市西京区京都大学桂 C クラスターC1 棟 TEL075-383-2000

2.2 PC 鋼材の緊張と破断

図6に示すように,緊張力はPC鋼材要素と同位置 に配置した剛性が限りなく小さい,コンクリートと 完全付着のダミー要素に圧縮力を与えることで模擬 した.この場合,PC鋼材要素の降伏強度と引張強度 を緊張応力の800MPa分小さくシフトすることで緊張 後のPC鋼材を模擬した.

破断場所はPC鋼材の曲げ上げ開始点とした.また, 曲げ上げ部はグラウト未充填であることを想定し緊 張力と抵抗力を失うようPC鋼材要素とダミー要素の 両方を曲げ上げ部から取り除くことで破断を模擬し た.一方,グラウト充填側では破断点から完全に再 定着し,緊張力が維持されるようモデル化した.ま た,破断は上側のPC鋼材から(図5の⑧~)所定本数 を破断して載荷した.

3. 解析結果および考察

3.1 荷重変位曲線に基づく最大荷重の変化

図7に等曲げスパン5000mm時の荷重変位曲線を最 大荷重(▲)とともに示す.破断本数が6本になると 大きく耐荷力が落ちる結果となった.

3.2 応力とひずみに基づく耐荷性状の変化 (1)ひび割れ発生時

図8に示すように、6本破断ではスパン中央より先 に6本目のPC鋼材破断部で曲げひび割れが生じ、 斜め方向に進展する曲げせん断ひび割れとなった. (2)最大荷重時

曲げ上げ部破断が存在する場合,最大荷重時に PC 鋼材の各破断部で曲げせん断ひび割れが発生した. 図9に示すように,6本破断ではスパン中央ではな く破断部のコンクリートのひび割れが顕著となった. また,図9に四角で示した部分の各せん断補強筋の ひずみの最大値の分布を図10に示す.6本目の破断 部付近のせん断補強筋が降伏し,局所的にひずみが 大きくなった.これらより,5本までの破断での中 央部の曲げ破壊よりも破断部のせん断破壊が支配的 であったと考えられる.しかし,多数が破断しない と破壊形式の変化や最大荷重の低下がないことも分 かった.

3.3 等曲げスパンの影響

等曲げスパンを 500mm にしても, 5000mm と同様に 6本目の破断で破壊形式が変化し,最大荷重が低下することがわかった.

4. 結論

PC 鋼材の曲げ上げ部破断箇所で曲げひび割れや その進展したせん断ひび割れが生じやすくなる.ま た,破断数が多くなるとせん断ひび割れが拡大し, せん断破壊傾向となり最大荷重が低下する.